Краткие сведения о пластмассах

Пластические массы (пластмассы и пластики) - материалы на основе природных или синтетических полимеров, способные под влиянием нагревания и давления формироваться в изделия сложной конфигурации и затем устойчиво сохранять приданную форму.

Пластмассы являются весьма перспективным конструкционным материалом. Их используют не только как заменители металлов, не и как самостоятельный материал для различных изделий, обладающих многими положительными качествами.

Изготовление пластмассовых конструкций, как правило, менее трудоёмко и энергоёмко, чем из других материалов. Они с успехом заменяют конструкции из легированных сталей, драгоценных металлов, бетона и дерева, позволяя тем самым экономить промышленно важные материалы.

Пластмассы - важнейшие конструкционные материалы современной техники. Их используют:

o в машиностроении (резервуары; подшипники скольжения; зубчатые и червячные колеса; детали тормозных узлов; рабочие органы насосов и турбомашин; технологическая оснастка и др.);

o в элетро- и радиотехнике (устройство телеграфных столбов; различных деталей и др.);

o на железнодорожном и других видах транспорта (детали автомобилей, самолетов, ракет; кузова различного транспорта; трубопроводы и др.;

o в строительстве (создание большепролетных панелей покрытия до 12 м; оболочек; в качестве отделочного материала; светопрозрачные ограждения; навесы; вентиляционные устройства; дымовые трубы;

o оконные переплеты; светопрозрачные стены и др.;

o в сельском хозяйстве (теплицы и др.);

o в медицине (приборы; аппараты; изготовление «запасных» частей человеческого организма - костей, суставов, аорт и других крупных кровеносных сосудов);

o в быту (посуда, одежда, обувь, меха и др.).

10. Углеродистые стали — это сплавы в основном железа с углеродом, содержащие до 2% углерода. Кроме углерода, эти стали содержат до 0,8% марганца и до 0,4% кремния, остающихся после раскисления, а также вредные примеси — до 0,055% серы и до 0,045% фосфора.

Углеродистая сталь является основным материалом для изготовления деталей машин и аппаратов. Для котельных агрегатов, турбин, вспомогательного оборудования широко применяют низкруглеродистые стали, содержащие до 0,25% углерода. Они очень пластичны и поэтому хорошо поддаются обработке давлением, гибке и правке в горячем и холодном состоянии, хорошо свариваются. Эти стали можно использовать также в виде стального фасонного литья. Кроме того, они обладают вполне удовлетворительными механическими свойствами: достаточно прочны при температурах до 450° С, хорошо воспринимают динамические нагрузки.

Низкоуглеродистые стали удовлетворительно сопротивляются коррозии в условиях работы ряда деталей тепломеханического оборудования электростанций. Эти стали самые дешевые и наименее дефицитные.

Особенности производства стали и стальных полуфабрикатов оказывают существенное влияние на механические свойства и качество готовых изделий.

Большинство деталей котлов и турбин изготавливают из углеродистой стали, выплавленной в основных мартеновских печах.

Продувкой в бессемеровском конвертере получают углеродистую сталь с содержанием углерода до 0,5%. Эту сталь применяют для производства сварных труб неответственного назначения, болтов, профилей, тонкой жести.

При одинаковом содержании углерода бессемеровская сталь имеет более высокую прочность и твердость, чем мартеновская. Эта разница в свойствах объясняется тем, что в бессемеровской стали содержится повышенное количество растворенных азота и фосфора — элементов, упрочняющих сталь, но делающих ее одновременно и более хрупкой. Применение кислородного дутья в конвертерах значительно ослабляет этот недостаток конвертерной стали.

Сталь, полученная в конвертерах с кислородным дутьем и основной футеровкой, приближается по свойствам к мартеновской.

Кроме способа выплавки, на свойства стали и готовых изделий большое влияние оказывает способ раскисления, по которому стали делятся на спокойные (сп), полуспокойные (пс) и кипящие (кп).

По назначению углеродистые стали делят на конструкционные и инструментальные. Конструкционные стали в свою очередь разделяют на строительные и машиностроительные.

В строительных сталях содержание углерода обычно не превышает 0,25%, т. е. эти стали относятся к категории малоуглеродистых. Они хорошо свариваются, хорошо деформируются в горячем и холодном состоянии, но прочность их относительно невысока.

Машиностроительные малоуглеродистые стали часто применяют в качестве цементуемых, т. е. для деталей, подвергаемых поверхностному науглероживанию и закалке для повышения износостойкости, а также для изготовления крепежных деталей. Среднеуглеродистые машиностроительные стали (0,3—0,7% углерода) прочнее строительных и могут подвергаться закалке с высоким отпуском. В результате такой термической обработки улучшаются их механические свойства. Однако эти стали хуже свариваются и плохо поддаются деформации в холодном состоянии, v Инструментальные стали содержат от 0,7 до 1,4% углерода.

Углеродистые стали классифицируют также по качеству, которое определяется содержанием серы и фосфора, способом производства и постоянством механических свойств и химического состава. Чем меньше содержание вредных примесей, колебание механических свойств и химического состава, тем выше качество стали.

Углеродистые стали бывают обыкновенного качества, качественные и высококачественные.

Углерод — элемент, в основном определяющий свойства углеродистых сталей. Влияние углерода на прочность и пластичность углеродистой стали после прокатки показано на рис. 66. С увеличением содержания углерода возрастают предел прочности и твердость стали, снижаются показатели пластичности (относительное удлинение и относительное сужение), а также ударная вязкость. При 0,8% углерода прочность стали достигает максимального значения, после чего она начинает снижаться.

Изменение прочности стали в зависимости от содержания углерода легко объяснить характером изменения микроструктуры. Незакаленная углеродистая сталь при содержании углерода менее 0,8% состоит из кристаллитов свободного феррита и перлита, при 0,8% — только из перлита и при содержании углерода более 0,8% — из перлита и свободного цементита.

Феррит (твердый раствор углерода в а-железе) — очень пластичен и вязок, но непрочен. Перлит, механическая смесь тонкодисперсных пластинок феррита и цементита, придает прочность. Цементит очень тверд, хрупок и статически прочен. При повышении в стали содержания углерода (в пределах до 0,8%) увеличивается содержание перлита и повышается прочность стали. Однако вместе с этим снижаются ее пластичность и ударная вязкость. При содержании 0,8% С (100% перлита) прочность стали достигает максимума. При дальнейшем увеличении содержания углерода избыточный свободный цементит образует оторочку вокруг перлитных зерен, что приводит к хрупкому разрушению и неко-торому снижению прочности стали.

Марганец вводят в любую сталь для раскисления (т. е. для устранения вредных включений закиси железа). Марганец растворяется в феррите и цементите, поэтому его обнаружение металлографическими методами невозможно. Он повышает прочность стали и сильно увеличивает прокаливаемость. Содержание марганца в углеродистой стали отдельных марок может достигать 0,8%.

Кремний, подобно марганцу, является раскислителем, но действует более эффективно. В кипящей стали содержание кремния не должно превышать 0,07%. Если кремния будет больше, то раскисление кремнием произойдет настолько полно, что не получится «кипения» жидкого металла за счет раскисления углеродом. В спокойной углеродистой стали содержится от 0,12 до 0,37% кремния. Весь кремний растворяется в феррите. Он сильно повышает прочность и твердость стали.

Сера — вредная примесь. В процессе выплавки стали содержание серы снижают, но полностью ее удалить не удается. В мартеновской стали обыкновенного качества содержание серы допускается до 0,055%.

Присутствие серы в большом количестве приводит к образованию трещин при ковке, штамповке и прокатке в горячем состоянии, ото явление называется красноломкостью. В углеродистой стали сера взаимодействует с железом, в результате чего получается сернистое железо FeS. Сернистое железо образует с железом относительно легкоплавкую эвтектику, которая располагается по границам зерен. При температурах ковки, штамповки, прокатки в горячем состоянии эвтектика FeS—Fe находится в жидком состоянии. В процессе горячей пластической деформации по границам зерен, где располагается жидкая эвтектика, образуются горячие трещины.

Если в сталь ввести достаточное количество марганца, то вредное влияние серы будет устранено, так как она будет связана в тугоплавкий сульфид марганца MnS. Включения MnS располагаются в середине зерен, а не по их границам. При горячей обработке давлением включения MnS легко деформируются без обра-зования трещин.

Фосфор, подобно сере, является вредной примесью. Растворяясь в феррите, фосфор резко снижает его пластичность, повышает температуру перехода в хрупкое состояние, или иначе — вызывает хладноломкость стали. Это явление наблюдается при содержании фосфора свыше 0,1 %. Однако допустить содержание даже 0,05% Р для стали ответственного назначения уже рискованно, так как фосфор очень склонен к ликвации. Области слитка с повышенным содержанием фосфора становятся хладноломкими. В мартеновской стали обыкновенного качества допускается не более 0,045% Р.

Сера и фосфор, вызывая ломкость стали и одновременно понижая механические свойства, улучшают обрабатываемость резанием: повышается чистота обрабатываемой поверхности, увеличивается время между переточками резцов, фрез и т. д. Поэтому для ряда неответственных деталей, подвергаемых механической обработке, применяют так называемые автоматные стали с повы-шенным содержанием серы (до 0,30%) и фосфора (до 0,15%).

Кислород — вредная примесь. Закись железа, подобно сере, вызывает красноломкость стали. Очень твердые окислы алюминия, кремния и марганца резко ухудшают обрабатываемость стали резанием, быстро затупляя режущий инструмент.

В процессе выплавки углеродистой стали из металлического лома в нее могут попасть никель, хром, медь и другие элементы. Эти примеси ухудшают технологические свойства углеродистой стали (в частности, свариваемость), поэтому их содержание стараются свести к минимуму.

83.

Наши рекомендации