Общие сведения о промышленных сетях
Промышленной сетью называют комплекс оборудования и программного обеспечения, которые обеспечивают обмен информацией (коммуникацию) между несколькими устройствами. Промышленная сеть является основой для построения распределенных систем сбора данных и управления.
Поскольку в промышленной автоматизации сетевые интерфейсы могут быть неотъемлемой частью соединяемых устройств, а сетевое программное обеспечение прикладного уровня модели OSI исполняется на основном процессоре промышленного контроллера, то отделить сетевую часть от устройств, объединяемых в сеть, иногда физически невозможно. С другой стороны, смену одной сети на другую часто можно выполнить с помощью замены сетевого ПО и сетевого адаптера или введением преобразователя интерфейса, поэтому часто один и тот же тип ПЛК может использоваться в сетях различных типов.
Соединение промышленной сети с ее компонентами (устройствами, узлами сети) выполняется с помощью интерфейсов. Сетевым интерфейсом называют логическую и (или) физическую границу между устройством и средой передачи информации. Обычно этой границей является набор электронных компонентов и связанного с ними программного обеспечения. При существенных модификациях внутренней структуры устройства или программного обеспечения интерфейс остается без изменений, что является одним из признаков, позволяющих выделить интерфейс в составе оборудования.
Наиболее важными параметрами интерфейса являются пропускная способность и максимальная длина подключаемого кабеля. Промышленные интерфейсы обычно обеспечивают гальваническую развязку между соединяемыми устройствами. Наиболее распространены в промышленной автоматизации последовательные интерфейсы RS-485, RS-232, RS-422, Ethernet, CAN, HART, AS-интерфейс.
Для обмена информацией взаимодействующие устройства должны иметь одинаковый протокол обмена. В простейшей форме протокол - это набор правил, которые управляют обменом информацией. Он определяет синтаксис и семантику сообщений, операции управления, синхронизацию и состояния при коммуникации. Протокол может быть реализован аппаратно, программно или программно-аппаратно. Название сети обычно совпадает с названием протокола, что объясняется его определяющей ролью при создания сети. В России используются сетевые протоколы, описанные в серии стандартов ГОСТ.
Обычно сеть использует несколько протоколов, образующих стек протоколов - набор связанных коммуникационных протоколов, которые функционируют совместно и используют некоторые или все семь уровней модели OSI. Для большинства сетей стек протоколов реализован с помощью специализированных сетевых микросхем или встроен в универсальный микропроцессор.
Взаимодействие устройств в промышленных сетях выполняется в соответствии с моделями клиент-сервер или издатель-подписчик (производитель-потребитель).
В модели клиент-сервер взаимодействуют два объекта. Сервером является объект, который предоставляет сервис, т. е. который выполняет некоторые действия по запросу клиента. Сеть может содержать несколько серверов и несколько клиентов. Каждый клиент может посылать запросы нескольким серверам, а каждый сервер может отвечать на запросы нескольких клиентов. Эта модель удобна для передачи данных, которые появляются периодически или в заранее известное время, как, например, значения температуры в периодическом технологическом процессе. Однако эта модель неудобна для передачи случайно возникающий событий, например, события, состоящего в случайном срабатывании датчика уровня, поскольку для получения этого события клиент должен периодически, с высокой частотой, запрашивать состояние датчика и анализировать его, перегружая сеть бесполезным трафиком.
В модели взаимодействия издатель-подписчик имеется один издатель и множество подписчиков. Подписчики сообщают издателю список тегов, значения которых они хотят получать по определенному расписанию или по мере появления новых данных. Каждый клиент может подписаться на свой набор тегов. В соответствии с установленным расписанием издатель рассылает подписчикам запрошенную информацию.
В любой модели взаимодействия можно выделить устройство, которое управляет другим (подчиненным) устройством. Устройство, проявившее инициативу в обмене, называют ведущим, главным или мастером (Master). Устройство, которое отвечает на запросы мастера, называют ведомым, подчиненным или слейвом (Slave). Ведомое устройство никогда не начинает коммуникацию первым. Оно ждет запроса от ведущего и только отвечает на запросы. Например, в модели клиент-сервер клиент является мастером, сервер - подчиненным. В модели издатель-подписчик на этапе подписки мастером является клиент, а на этапе рассылки публикаций - сервер.
В сети может быть одно или несколько ведущих устройств. Такие сети называется, соответственно, одномастерными или многомастерными. В многомастерной сети возникает проблема разрешения конфликтов между устройствами, пытающимися одновременно получить доступ к среде передачи информации. Конфликты могут быть разрешены методом передачи маркера, как, например, в сети Profibus, методом побитного сравнения идентификатора (используется в CAN), методом прослушивания сети (используется в Ethernet) и методом предотвращения коллизий (используется в беспроводных сетях).
Во всех сетях применяется "широковещательная рассылка" без определенного адреса, т.е. всем участникам сети. Такой режим используется обычно для синхронизации процессов в сети, например, для одновременного запуска процесса ввода данных всеми устройствами ввода или для синхронизации часов.
Некоторые сети используют многоабонентский режим, когда одно и то же сообщение посылается нескольким устройствам одновременно.
Передача информации в сети выполняется через канал между передающим и приемным устройством. Канал является понятием теории информации и включает в себя линию связи и приемопередающие устройства. В общем случае вместо термина "линия связи" используют термин "среда передачи", в качестве которой может выступать, например, оптоволокно, эфир или витая пара проводов.
В распределенных системах на основе промышленных сетей может быть пять типов данных: сигналы, команды, состояния, события, запросы.
Сигналы - это результаты измерений, получаемые от датчиков и измерительных преобразователей. Их "время жизни" очень короткое, поэтому часто требуется получить только последние данные и в максимально короткий срок.
Команды - это сообщения, которые вызывают некоторые действия, например, закрытие клапана или включение ПИД-регулятора. Большинство систем должны обрабатывать потоки команд, которые передаются адресату с высокой надежностью и их нельзя передать повторно.
Состояние показывает текущее или будущее состояние системы, в которое она должна перейти. Требование к времени его доставки может быть не такие жестким, как для команд; непринятое состояние может быть послано повторно.
Событие наступает обычно при достижении текущим параметром граничного значения. Например, событием может быть выход температуры за технологически допустимую границу. За появлением события должны следовать ответные действия, поэтому для событий особенно важно требование гарантированного времени доставки.
Запрос - это команда, посылаемая для того, чтобы получить ответ. Примером может быть запрос серверу, который выдает на него ответ.
Ниже при описании сетей будет использоваться понятие фрейма. Под фреймом понимают набор данных, передаваемых по сети и имеющих строго оговоренную структуру (формат). Термины "кадр", "дейтаграмма" "сегмент", используемые в стандартах на различные промышленные сети, ниже будут использованы как синонимы фрейма.
Сети могут иметь топологию звезды, кольца, шины или смешанную. "Звезда" в промышленной автоматизации используется редко. Кольцоиспользуется в основном для передачи маркера в многомастерных сетях. Шинная топология является общепринятой, что является одной из причин применения термина "промышленная шина" вместо "промышленная сеть". К общей шине в разных местах может быть подключено произвольное количество устройств.
Основными параметрами промышленных сетей являются производительность и надежность. Производительность сети характеризуетсявременем реакции и пропускной способностью.
Время реакции сети определяется как интервал времени между запросом ведущего устройства и ответом ведомого при условии, что ведомое устройство имеет пренебрежимо малую задержку выработки ответа на запрос.
Пропускная способность сети определяет количество информации, переносимой сетью в единицу времени. Измеряется в бит/с и зависит от быстродействия сетевых приемопередатчиков и среды передачи.
Важной характеристикой промышленных сетей является надежность доставки данных. Надежность характеризуется коэффициентом готовности, вероятностью доставки данных, предсказуемостью времени доставки, безопасностью, отказоустойчивостью.
Коэффициент готовности равен отношению времени наработки до отказа к сумме времени наработки до отказа и времени восстановления после отказа.
Вероятность доставки данных определяется помехоустойчивостью канала передачи и детерминированностью доступа к каналу.
В беспроводных сетях вероятность потери пакетов при передаче гораздо выше, чем в проводных. В сетях со случайным методом доступа к каналу существует вероятность того, что данные никогда не будут доставлены абоненту.
Время доставки данных в офисных сетях Ethernet является случайной величиной, однако в промышленном Ethernet эта проблема решена применением коммутаторов.
Безопасность - это способность сети защитить передаваемые данные от несанкционированного доступа.
Отказоустойчивость - это способность сети продолжать функционирование при отказе некоторых элементов. При этом характеристики системы могут ухудшиться, но она не теряет работоспособности.
В последнее время появился термин "качество обслуживания" (QoS - "Quality of Service"). QoS определяет вероятность того, что сеть будет передавать заданный поток данных между двумя узлами в соответствии с потребностями приложения.
Защита от помех
Дорогие и надежные контроллеры, модули ввода-вывода, датчики могут оказаться неработоспособными, если монтаж системы выполнен без учета требований электромагнитной совместимости и правил заземления. Месяцы работы, десятки командировок к заказчику могут оказаться бесполезными, если не разобраться глубоко в методах защиты от воздействия помех. Неправильное заземление в 40% случаев является причиной дорогостоящих простоев и порчи чувствительного оборудования, используемого в нефтяной, автомобильной и горной промышленности [Proper]. Следствием неправильного заземления могут быть изредка появляющиеся сбои в работе систем автоматики, повышенная погрешность измерений, выход из строя чувствительных элементов, замедление работы системы вследствие появления потока ошибок в каналах обмена, нестабильность регулируемых параметров, ошибки в собираемых данных.
ГОСТ 30372-95/ГОСТ Р 50397-92 дает следующее определение электромагнитной помехи: это электромагнитное явление, процесс, которые снижают или могут снизить качество функционирования технического средства. Для нормального функционирования электронных устройств необходимо обеспечивать их электромагнитную совместимость (ЭМС) с электромагнитной обстановкой (ЭМО) на объекте. Под электромагнитной обстановкой понимается совокупность электромагнитных процессов в заданной области пространства, частотном и временном диапазоне.
Тема заземления в промышленной автоматизации является ниаболее плохо разработанной. Сложность проблемы связана с тем, что источники помех, приемники и пути их прохождения распределены в пространстве, момент и факт их появления часто является случайной и ненаблюдаемой величиной, а местонахождение априори неизвестно. Сложно также провести измерения помех, практически невозможно сделать достаточно точный теоретический анализ, поскольку задача обычно является трехмерной и описывается системой дифференциальных уравнений в частных производных. Поэтому обоснование того или иного метода заземления, которое, строго говоря, должно опираться на математические расчеты, на практике приходится делать на основании опыта и интуиции. Решение проблем заземления в настоящее время находится на грани между пониманием, интуицией и везением [Денисенко , Vijayaraghavan].
Понимание причин возникновения помех при проектировании систем автоматизации позволяет избежать ряд ошибок в выборе оборудования, его размещении, экранировании и кабельной разводке, а также ускорить процесс внедрения системы. Подключение датчиков к измерительной системе является очень непростым делом и часто выявляет неожиданные проблемы, причина которых кроется в том, что источники погрешностей, вызванных паразитными связями, являются скрытыми от проектировщика - они не нарисованы на электрической схеме. Об их местонахождении можно только догадываться, их появление трудно предсказать, а устранить можно только в процессе эксперимента. Тем не менее, ряд типовых условий возникновения помех и методов их устранения достаточно хорошо изучен. О них и пойдет речь в настоящей главе.
Источники помех
Все помехи, воздействующие на кабели, датчики, исполнительные механизмы, контроллеры и металлические шкафы автоматики, в большинстве случаев протекают в виде тока по заземляющим проводникам, создавая вокруг них паразитное электромагнитное поле и падение напряжения помехи на проводниках. Источниками и причинами помех может быть молния, статическое электричество, электромагнитное излучение, "шумящее" оборудование, сеть питания 220 В 50 Гц, переключаемые сетевые нагрузки, трибоэлектричество, гальванические пары, термоэлектрический эффект, электролитические процессы, движение проводника в магнитном поле и др.
Государственные центры стандартизации и сертификации во всех странах мира не допускают к производству оборудование, являющееся источником помех недопустимо высокого уровня. Однако уровень помех невозможно сделать равным нулю. Кроме того, на практике встречается достаточно много источников помех, связанных с неисправностями или применением не сертифицированного оборудования.
В России допустимый уровень помех и устойчивость оборудования к их воздействию нормируются ГОСТ Р 51318.14.1, ГОСТ Р 51318.14.2, ГОСТ Р 51317.3.2, ГОСТ Р 51317.3.3, ГОСТ Р 51317.4.2, ГОСТ 51317.4.4, ГОСТ Р 51317.4.11, ГОСТ Р 51522, ГОСТ Р 50648.
При конструировании электронной аппаратуры для снижения уровня помех используют микромощную элементную базу с невысоким быстродействием, уменьшение длины проводников и экранирование. Особые меры принимаются для снижения помех от радиопередающих устройств беспроводных сетей (подробнее см. раздел "Промышленные сети и интерфейсы".
Паразитные воздействия помех на процесс передачи сигнала в системах промышленной автоматизации можно разделить на следующие группы:
Рис. 3.1. Относительный уровень спектральной плотности мощности и частота основных источников электромагнитных помех |
o воздействия через кондуктивные связи;
o влияние неэквипотенциальности "земли";
o наводки через взаимную индуктивность;
o наводки через емкостные связи;
o высокочастотные электромагнитные наводки.
Характеристики помех
Основной характеристикой помехи является зависимость спектральной плотности мощности от частоты. Помехи, воздействующие на системы автоматизации, имеют спектр от постоянного тока до единиц гигагерц (см. рис. 3.1) [Low]. Помехи, лежащие в полосе пропускания аналоговых систем автоматики, имеют частоты до десятков килогерц. На цифровые цепи воздействуют помехи в полосе до сотен мегагерц. Помехи гигагерцевого диапазона непосредственного влияния на системы автоматизации не оказывают, однако после преобразования в нелинейных элементах или вследствие алиасного эффекта (см. главу "Измерительные каналы") они могут порождать низкочастотные помехи, лежащие в границах воспринимаемого спектра.
Устройства, в которых происходит переключение уровня тока или напряжения за короткий промежуток времени, являются источниками широкополосных помех (двигатели, выключатели, реле и контакторы, трамвайные токосъемники и т. п.). Устройства, в которых происходит периодическое изменение тока или напряжения с ограниченной скоростью нарастания, дают узкополосные помехи (например, сотовые телефоны, радиопередатчики, генераторы сигналов, микроволновые печи, микропроцессорные системы).
В сигнальных цепях и цепях заземления систем автоматизации содержится весь спектр возможных помех. Однако паразитное влияние оказывают только помехи, частоты которых лежат в полосе пропускания устройств автоматики. Среднеквадратическое значение напряжения или тока помехи определяется шириной ее спектра:
, | (3.1) |
Рис. 3.2. АЧХ фильтра, входящего в состав аналоговых модулей RealLab! серии NL |
где - спектральная плотность мощности помехи, ; и - нижняя и верхняя границы спектра помехи. В частном случае, когда слабо зависит от частоты, приведенное соотношение упрощается:
.
Таким образом, для уменьшения влияния помех на системы автоматизации нужно сужать ширину полосы пропускания аналоговых модулей ввода и вывода. Например, если известно, что постоянная времени датчика составляет 0,3 сек, что приблизительно соответствует полосе пропускания сигнала =0,5 Гц, то ограничение полосы пропускания модуля ввода величиной 0,5 Гц позволит уменьшить уровень помехи и тем самым повысить точность измерений, снизить требования к заземлению, экранированию и монтажу системы.
Однако фильтр вносит динамическую погрешность в результаты измерения, которая зависит от формы (спектра) входного сигнала. Динамическая погрешность свойственна всем известным методам ослабления помехи нормального вида, хотя она часто не указывается в характеристиках аналоговых модулей, что может вводить пользователя в заблуждение. Подробнее динамические погрешности рассматриваются в разделе "Измерительные каналы".
Наиболее мощной в системах автоматизации является помеха с частотой питающей сети 50 Гц. Поэтому для ее подавления используют узкополосные фильтры, настроенные точно (с помощью кварца) на частоту 50 Гц. На рис. 3.2 в качестве примера приведена амплитудно-частотная характеристика (АЧХ) цифрового фильтра, использованного в модулях RealLab! серии NL. Фильтр настроен таким образом, что он ослабляет на 120 дБ (на 6 порядков) помеху с частотой 50 Гц.
При еще большей инерционности датчиков или контролируемой системы (например, когда датчик стоит в печи, время выхода на режим которой составляет несколько часов) можно использовать процедуру многократных измерений или дополнительную цифровую фильтрацию в управляющем контроллере или компьютере. В общем случае, чем больше время измерения, тем точнее можно выделить сигнал на фоне шума и тем сильнее ослабить требования к уровню помех.
Следует отметить, что наличие фильтра не всегда спасает от влияния помех. Например, если высокочастотная помеха, перед тем как попасть на вход модуля ввода, детектируется или выпрямляется на нелинейных элементах, то из сигнала помехи выделяется постоянная или низкочастотная составляющая, которая уже не может быть ослаблена фильтром модуля ввода. В качестве нелинейных элементов могут выступать, например, контакты разнородных металлов, защитные диоды, стабилитроны, варисторы.