Пьезометрический график тепловых сетей.
Пьезометрический график составляется на основании данных гидравлического расчёта. При построении графика пользуются единицей измерения гидравлического потенциала – напором. Напор и давление связаны следующей зависимостью:
(3.1)
где H и DH – напор и потеря напора, м;
P и DP – давление и потеря давления, Па;
r - удельный вес теплоносителя, кг/м3.
h, R – удельная потеря напора и удельное падение давления, Па/м.
Величина напора, отсчитанная от уровня прокладки оси трубопровода в данной точке, называется пьезометрическим напором. Разность пьезометрических напоров подающего и обратного трубопроводов тепловой сети даёт величину располагаемого напора в данной точке. Пьезометрический график определяет полный напор и располагаемый напор в отдельных точках тепловой сети на абонентских вводах. На основании пьезометрического графика выбирают подпиточные и сетевые насосы, автоматические устройства.
При построении пьезометрического графика должны быть соблюдены условия:
1. Не превышение допускаемых давлений в абонентских системах, присоединенных к сети. В чугунных радиаторах не должно превышать 0,6 МПа, поэтому давление в обратной линии тепловой сети не должно быть более 0,6 МПа и превышать 60м.
2. обеспечении избыточного (выше атмосферного) давления в тепловой сети и абонентских системах для предупреждения подсоса воздуха и связанного с этим нарушения циркуляции воды в системах.
3. обеспечение не вскипания воды в тепловой сети и местных системах, где температура воды превосходит 100 ºС .
4. обеспечение требуемого давления во всасывающем патрубке сетевых насосов из условия предупреждения кавитации не менее 50 Па, пьезометрический напор в обратной линии должен быть не ниже 5м.
Тепловой расчёт
Назначением теплового расчёта является определение количество тепла, теряемого при его транспортировке, способов уменьшения этих потерь, действительной температуры теплоносителя, вида изоляции и расчёта её толщины.
Задачи теплового расчёта:
1. определение количества теплоты, теряемого при транспортировке;
2. поиск способов уменьшения этих потерь;
3. определение действительной температуры теплоносителя;
4. определение вида и толщины изоляции;
В теплоотдаче участвуют только термические сопротивления слоя и поверхности.
Для цилиндрических объектов диаметром менее 2 метров толщина теплоизоляционного слоя определяется:
где В=dиз/dн – отношение наружного диаметра изоляционного слоя к наружному диаметру;
.
α – коэффициент теплоотдачи от наружной изоляции, принимаемый по справочнику 9[6], для трубопроводов прокладываемых в каналах принимается равным 8,7 Вт/(м3 оС);
λиз – теплопроводность теплоизоляционного слоя, определяемая по пп 2,7 3,11[6] для пенополиуритана 0,03 Вт/(м оС);
rm— термическое сопротивление стенки трубопровод.
— наружный диаметр изолируемого объекта, м.
– сопротивление теплопередаче на 1 м длины изоляционного слоя;
о С∙м/Вт
– температура вещества;
– температура окружающей среды;
– коэффициент, равный 1.
– норма плотности теплового потока, в нашем случае равный 39Вт/м;
Теперь рассчитаем термические сопротивления.
1. тепловое сопротивление наружной поверхности Rпиз:
оС∙м/Вт
2. тепловое сопротивление изоляции
оС∙м/Вт
3. Тепловое сопротивление грунта определяется по формуле:
(25)
где - коэффициент теплопроводности грунта, Вт/м2 0С
d – диаметр теплопровода цилиндрической формы с учетом всех слоев изоляции, м
3. Тепловое сопротивление канала:
(26)
4. Тепловое сопротивление поверхности канала:
=2,94+0,339+0,029+0,22+0,195=3,723
Фактический тепловой поток:
Определим тепловые потери.
Тепловые потери в сети слагаются из линейных и местных потерь. Линейными теплопотерями являются теплопотери трубопроводов, не имеющих арматуры и фасонных частей. Местными теплопотерями являются фасонных частей, арматуры, опорных конструкций, фланцев и т.д.
Линейные потери определяются по формуле:
=0,15
А падение температуры теплоносителя:
Следовательно, температура в конце расчетного участка:
7. Подбор сетевых и подпиточных насосов
Для теплоснабжения микрорайона города в котельной устанавливаются одинаковых попеременно работающих центробежных насоса – рабочий и резервный. Циркуляционные насосы имеют обводную линию, которая позволяет регулировать работу насосов ив случае их остановки (при авариях) поддерживать небольшою естественную циркуляцию.
По построенному пьезометрическому графику определяем напоры для сетевого и подпиточного насосов.
м
м
Подбираем насосы:
Таблица 3. Характеристики подпиточного насоса.
Насос | марка | Производительность м³/ч | Полный напор Н, м | Мощность, кВт | К.п.д. проц. | Допустимая высота всасывания, м | Диаметр рабочего колеса, мм. | |
На валу насоса | электродвигателя | |||||||
Подпиточный | 3K-9 | 0.97 | 8.2 | - | 12.5% | - |
Таблица 4. Характеристики сетевого насоса.
Насос | марка | Производительность м³/ч | Полный напор Н, м | Мощность, кВт | К.п.д. проц. | Допустимая высота всасывания, м | Диаметр рабочего колеса, мм. | |
На валу насоса | электродвигателя | |||||||
Сетевой | 3k-9 | 13.4 | 4.3 | - | - |
Заключение
В результате проведённых работ по расчёту и проектированию тепловых сетей микрорайона:
1. Разработаны план тепловых сетей и схема прокладки труб тепловых сетей
2. Распределена потеря давления в системе теплоснабжения
3. Разработана спецификация потребных материалов и оборудования
4. Построены температурный, пьезометрический и график расходов
5 Подобрано оборудование для котельной