Параллельные вселенные или параллельная математика?
Результат Малдасены и многие другие достижения, сделанные за прошедшие годы, воспринимаются как гипотезы. Поскольку математическая структура теории невероятно сложна, нахождение окончательных и безупречных аргументов является трудной задачей. Однако голографические идеи с успехом прошли строгие математические проверки, попав в мейнстрим физических исследований, направленных на поиск глубинных основ законов природы.
Один из факторов, вносящий свою лепту в сложность доказательства того, что граничный и объёмный миры — это разные замаскированные версии одной и той же физики, подчёркивает значительность этого результата, если он, конечно, справедлив. В главе 5 я говорил, что в большинстве случаев физики используют приближённые методы, и описал методы теории возмущений (вспомните пример с лотереей Ральфа и Элис). Я также подчеркнул, что такие методы приводят к правильным результатам только в случае, когда константа связи мала. При сравнении квантовой теории поля на границе и теории струн в балке Малдасена осознал, что когда константа связи одной теории мала, константа связи другой теории велика, и наоборот. Естественная проверка и возможный способ доказательства того, что две теории скрыто идентичны друг другу, сводится к проведению независимых вычислений в каждой теории и последующему сравнению. Однако это трудно сделать, потому что когда приближённые методы работают в одной теории, то они становятся неприменимыми в другой.116
Но если вы принимаете более абстрактные доводы Малдасены из предыдущего раздела, то, что было пертурбативным злом, становится вычислительной добродетелью. По аналогии со струнными дуальностями из главы 5, словарь, устанавливающий соответствия между границей и балком, переводит устрашающие вычисления, отягощённые большой константой связи в одном подходе, в простые вычисления с малой константой связи в другом подходе. В последние годы этот эффект был умело использован для получения результатов, которые могут быть экспериментально проверены.
На релятивистском коллайдере тяжёлых ионов (RHIC) в Брукхэйвене, Нью-Йорк, ядра золота сталкиваются друг с другом на почти околосветовых скоростях. Поскольку ядра содержат много протонов и нейтронов, в столкновениях рождаются многочисленные частицы, температура которых может в 200 000 раз превышать температуру поверхности Солнца. Это достаточно горячо для того, чтобы из протонов и нейтронов образовалась жидкость из кварков и связывающих их глюонов. Физики потратили много усилий, чтобы понять, как устроена эта жидкая фаза, получившая название кварк-глюонная плазма , потому что считается, что именно в этом состоянии находилось вещество вскоре после Большого взрыва.
Сложность в том, что константа связи в этой квантовой теории поля (квантовой хромодинамике ), описывающей горячий суп из кварков и глюонов, имеет большое значение, что ставит под сомнение применимость методов теории возмущения. Для преодоления этого препятствия были развиты многие изощрённые методы, но некоторые теоретические результаты по-прежнему не согласуются с экспериментальными данными. Например, при течении любой жидкости — будь то вода, патока или кварк-глюонная плазма — каждый слой жидкости оказывает тормозящее воздействие на слои сверху и снизу. Такое тормозящее воздействие известно как сдвиговая вязкость . В экспериментах на RHIC были проведены измерения сдвиговой вязкости кварк-глюонной плазмы, и полученные результаты оказались гораздо меньше, чем аналитические предсказания, сделанные с помощью пертурбативных методов квантовой теории поля.
Возможный способ преодолеть эту трудность заключается в следующем. Когда я вводил голографический принцип, я принял ту точку зрения, что всё, происходящее с нами внутри пространства-времени, является с помощью какого-то неожиданного трюка отражением процессов, которые происходят на удалённой граничной поверхности. Давайте обратим эту точку зрения. Представим, что наша Вселенная, или, более точно, кварки и глюоны в нашей Вселенной живут на границе, и потому эксперименты RHIC ставятся именно там. Теперь привлечём гипотезу Малдасены. Его результат показывает, что RHIC-эксперименты (описываемые квантовой теорией поля) имеют альтернативное математическое описание в терминах движущихся в объёме (или балке) струн. Детали происходящего сложны, но следствия такой перефразировки не заставляют себя долго ждать: трудные вычисления на границе (с большой константой связи) превращаются в более лёгкие вычисления в объёме (с малой константой связи).117
Павел Ковтун, Андрей Старинец и Дам Сон провели такие вычисления и получили результат, который оказался впечатляюще близок к экспериментальным данным. Эта пионерская работа вдохновила целую армию теоретиков провести множество струнных расчётов в попытке установить связь с наблюдениями на RHIC, что оживило взаимодействие между теорией и экспериментом — к чему долго стремились струнные теоретики.
Следует заметить, что граничная теория не может полностью воспроизводить нашу Вселенную, поскольку, например, она не содержит гравитации. Но это не препятствует установлению связи с данными на RHIC, потому что в проводимых экспериментах массы частиц настолько малы (даже при движении на околосветовых скоростях), что гравитационное притяжение не играет никакой практической роли. Однако это подчёркивает, что в таких приложениях теория струн не выступает как «теория всего»; наоборот, теория струн предоставляет новые вычислительные инструменты для преодоления препятствий, затрудняющих применение более традиционных методов. С консервативной точки зрения, рассмотрение кварков и глюонов с помощью многомерной теории струн может рассматриваться как некий мощный математический трюк. При менее консервативном подходе можно считать, что высокоразмерное струнное описание является, в некотором смысле, физически реальным, но этот смысл ещё предстоит установить.
Независимо от того, консервативна точка зрения или нет, возникающее слияние математических результатов и экспериментальных наблюдений в высшей степени впечатляет. Я не сторонник преувеличивать, но считаю эти достижения самыми выдающимися за последние десятилетия. Математические выкладки, описывающие движение струн внутри десятимерного пространства-времени, дают нам информацию о кварках и глюонах, живущих в четырёхмерном пространстве-времени, — и эта информация, рождённая на кончике пера, подкрепляется, как нам видится, экспериментами.