Рентгенівські і нейтринні телескопи.
Радіотелеско́п — астрофізичний прилад для прийому власного електромагнітного випромінювання космічних об'єктів у діапазоні несучих частот від десятків МГц до десятків ГГц і дослідження його характеристик: координат джерел, просторової структури, інтенсивності випромінювання, спектру і поляризації.
Антени деяких радіотелескопів схожі на звичайні рефлектори. Вони збирають радіохвилі у фокусі металевого увігнутого дзеркала, яке можна зробити ґратчастим і величезних розмірів — діаметром у десятки метрів. Інші радіотелескопи — це величезні рухомі рами, на яких паралельно один одному закріплені металеві стрижні або спіралі. Радіохвилі, що надходять, збуджують у них електромагнітні коливання, які після підсилення потрапляють на дуже чутливу приймальну радіоапаратуру для реєстрації радіовипромінювання об'єкта.
Радіотелескоп займає початкове положення (найнизькочастотніше) серед астрономічних приладів (або комплексів), що досліджують електромагнітне випромінювання. До радіотелескопів належать також гравітаційні телескопи. Більш високочастотні прилади:
- Інфрачервоний телескоп (діапазон теплового (інфрачервоного) випромінювання);
- Телескоп — (оптичний діапазон (іноді включаючи інфрачервоний і (або) ультрафіолетовий світловий діапазон);
- Рентгенівський телескоп (рентгенівський діапазон).
Будова та принцип дії
Радіотелескоп складається з антенної системи і радіоприймального пристрою — радіометра. Конструкції антен відрізняються великою різноманітністю, що обумовлена дуже широким діапазоном довжин хвиль, які використовуються в радіоастрономії (від 0,1 мм до 1 000 м). Для спрямування антен в область неба, яка досліджується, їх встановлюють звичайно на азимутальних монтуваннях, що забезпечують повороти по азимуту та висоті (повноповоротні антени). Існують також антени, що допускають лише обмежені повороти, і навіть повністю нерухомі. Напрям прийому в антенах останнього типу (звичайно дуже великого розміру) досягається шляхом переміщення опромінювача, що сприймає відображене від антени радіовипромінювання.
Для спостереження на коротких хвилях поширені дзеркальні параболічні антени, встановлені на поворотних пристроях, що служать для наведення радіотелескопів на джерело радіовипромінювання; за принципом дії такі радіотелескопи аналогічні оптичним телескопам-рефракторам. Часто використовуються комбінації ряду дзеркальних антен, що сполучені кабельними лініями в єдину систему — «ґрати». Для спостереження на довгих хвилях використовуються ґрати з великого числа елементарних випромінювачів — діполів.
Радіотелескоп повинен володіти високою чутливістю, що забезпечує надійну реєстрацію можливо більш слабкої густини потоку радіовипромінювання, гарноою роздільною здатністю, що дозволяє спостерігати менші просторові деталі досліджуваних об'єктів. Мінімальна густина потоку ΔР, що реєструється, визначається співвідношенням:
ΔP=P/(S√Δft)
де Р — потужність власних шумів радіотелескопа, S — ефективна площа (збираюча поверхня) антени, Δf — смуга частот, що приймаються, t — час накопичення сигналу.
Для поліпшення чутливості радіотелескопів збільшують їх збираючу поверхню та застосовують малошумні приймальні пристрої на основі мазерів, параметричних підсилювачів тощо. Роздільна здатність q радіотелескопа (в радіанах):
Q > I/D
де I — довжина хвилі, D — лінійний розмір апертури антени.
Найбільші дзеркальні антени (діаметром до 100 м на сантиметрових хвилях) мають роздільну здатність близько 1 кутової секунди, що зпівставно з можливостями неозброєного ока. Труднощі створення радіотелескопів великих розмірів з суцільним дзеркалом змушують широко використовувати ґрати, а для отримання двовимірного «зображення» — хрещаті, кільцеві та інші антени з незаповненою апертурою.
Апертурний синтез
Найрадикальнішим шляхом отримання високої роздільності в радіоастрономії є складання (синтез) антенного пристрою великої апертури за допомогою декількох порівняно невеликих антен, які в процесі спостережень переміщуються відносно один одного відповідно до заданих рухів великого антенного пристрою, що зображується або фіктивного. Існуючі радіотелескопи апертурного синтезу дозволяють одержувати радіозображення з роздільністю близько 1 кутової секунди. При використовуванні в системі синтезу радіоінтерферометрів з надвеликими базами можна очікувати роздільної здатності при отриманні зображень об'єктів порядку 10-2-10-4 кутових секунд. Радіотелескопи, що складаються із системи окремих антен, віддалених одна від одної (іноді на багато сотень км), за допомогою яких проводять одночасні спостереження космічного радіоджерела, дають змогу дізнатися про структуру радіоджерела й виміряти його кутовий розмір, навіть коли він у багато разів менший за кутову секунду.
Історія та розвиток
Радіотелескоп Грота Ребера
Радіотелескоп УТР-2. Харків
радіотелескоп РТ-70 П-400 біля селища Заозерне
Радіотелескоп ТНА-400 біля Сімферополя
Радіовипромінювання космічного походження на хвилі 14,6 м вперше було зареєстровано К. Янським (США) у 1931 році за допомогою антени, призначеної для дослідження радіоперешкод від блискавок. Після того, для його приймання створили обладнання різних систем. Перший радіотелескоп збудував Грот Ребер (англ. Grote Reber), радіоаматор з Уіттона (Іллінойс, США) у 1937 році на задньому подвірї своїх батьків. Його апарат мав параболічну форму антени діаметром 9 м. За його допомогою Грот накреслив зоряну мапу в радіодіапазоні на якій виділялись центральні області Чумацького шляху та «яскраві» об'єкти Лебідь A (Cyg A) и Кассіопея A (Cas A)[1]. Швидкий розвиток радіотелескопії почався в 40-х роках. У Австралії в 1948 був споруджений перший радіоінтерферометр, а в 1953 — перший хрещатий радіотелескоп. Великий повноповоротний параболоїд діаметром 76 м вперше був споруджений у Великобританії в 1957. Принцип отримання зображення з високою роздільною здатністю методом послідовного синтезу апертури розвивається з 1956 року в Кембриджі. У 1967 в США і Канаді проведені перші спостереження на інтерферометрах з незалежним записом сигналів і надвеликими базами. До 1975 кращі за точностю повноповоротні параболоїди встановлено на радіоастрономічних обсерваторіях в Еффельсберзі, Пущині і Симїзі, Кітт-Піку.
Радіотелескоп з нерухомою сферичною чашею споруджений в кратері вулкана в Аресібо, Пуерто-Ріко (діаметр 300 м, мінімальна довжина хвилі 10 см). Має дуже велику збираючу поверхню і використовується як локатор для картографування планет.
Хрестоподібні та кільцеві радіотелескопи функціонують в Молонгло, Австралія(хрест з 2 сітчастих параболічних циліндрів), Харкові (Т-подібна антена 1 800 x 900 м, складається з 2 040 вібраторів, λ = 10—30 м), Пущині (хрест з 2 циліндрів 1 000 x 1 000 м, λ = 2-10 м), Калгурре, Австралія (96 параболоїдів діаметром 13 м, розташованих по кільцю діаметром 3 км). Найбільші радіотелескопи апертурного синтезу — в Кембриджі, Великобританія (λ = 5 см) та Вестерборці, Нідерланди (λ = 6 см).
Уявлення про небесні тіла та їхні системи надзвичайно збагатилися після того, як почали вивчати їхнє радіовипромінювання.