Форматы представления графических и специальных типов данных
Быстрые аппаратные средства широко используются сегодня и сохраняют свою актуальность, как перспективные решения, для обеспечения компьютерной графики. Поэтому разрабатываемые технологии должны включать поддержку графических форматов данных.
Графические форматы практически включают в себя два подмножества - растровый и векторный.
В перечне растровых выделяют JPEG, GIF, EPS, BMP, PICT, PCX, TARGA, TIFF и др. включающие описания объекта размером до 16 Мбайт. В перечне отличий форматов не последнее место занимают методы сжатия, использованные при формировании описаний объектов.
Векторные форматы, как правило, содержат менее объемное описание объекта. Достигаемая степень сжатия в десятки и сотни раз больше по сравнению с растровыми. Вот отдельные из них: CGM, DXF, EPS, PICT, WMF и др.
Преобразования выполняют программы-трансляторы. Их сложность при преобразовании растровый - векторный во много раз больше, чем при преобразовании векторный - растровый.
КС обрабатывают и более сложные типы данных, например, модулярные. Форматы остатков эквивалентны форматам генетически связанных оснований, хотя в арифметике с переполнением могут превышать их.
Измерительная информация сегодня по мере роста возможностей систем обработки данных и систем первичного преобразования физических сигналов различной природы представляется все новыми типами данных.
Как показал проведенный анализ, значительное количество таких типов перекрывается понятием кластера коррелированных отсчетов.
Часто встречаются беззнаковые, десяти-, двенадцати-, четырнадцатиразрядные отсчеты, в системах с высокими скоростями входных потоков - шести- и четырехбитные отсчеты. При поступлении в систему они чаще всего характеризуются однородностью выборок т.е. постоянством скорости поступления.
Одной из первых операций применяемой к входному потоку является формирование кластера коррелированных отсчетов как объекта.
Например, простейший случай - выборка длительностью
, где
- предыстория развития сигнала, в ходе которой формируется кольцо данных с контролем энергии в кольце (сторожевой режим),
- выборка фиксированной длины достаточная для локализации информации об объекте.
Пример более сложного объекта - многоимпульсное отображение смещения негативного изображения границы объекта в плоскости анализа в когерентных фотоэлектрических микроскопах. В данном случае отсчеты слитны и формирование кластера коррелированных отсчетов не представляет труда и не требует больших ресурсов памяти. Сложнее это решить в случае адаптивно-перестраиваемого формирования зондирующего импульса с разрешением более высоким, чем позволяет полоса пропускания системы.
В этом случае вводится расширение времени анализа с “впечатыванием” новых смещенных зондирующих импульсов через интервалы повторения. Объем файла удерживающего фрагменты может быть очень большим и превышать сотни мегабайт.