Введение: Особенности операционных систем реального времени
Операционные системы реального времени
И.Б. Бурдонов, А.С. Косачев, В.Н. Пономаренко
Препринт Института системного программирования РАН
Оглавление
1. Введение: Особенности операционных систем реального времени
1.1. Процессы, потоки, задачи
1.2. Планирование, приоритеты
1.3. Память
1.4. Прерывания
1.5. Часы и таймеры
1.6. Стандарты ОСРВ
1.6.1. POSIX
1.6.2. DO-178B
1.6.3. ARINC-653
1.6.4. OSEK
1.6.5. Стандарты безопасности
1.7. Настраиваемость операционных систем
2. Краткие характеристики наиболее распространенных ОСРВ
2.1. VxWorks
2.2. QNX Neutrino RTOS
2.3. RTEMS
2.4. ChorusOS
2.5. Расширения реального времени для Windows NT
2.5.1. RTX для Windows NT
2.5.2. INtime
2.5.3. Microsoft Windows Embedded
2.6. TinyOS
2.7. OSEK/VDX
2.8. OSE RTOS
2.9. Contiki
2.10. pSOS
2.11. INTEGRITY
2.12. LynxOS
2.13. Microware OS-9
2.14. GRACE-OS
2.15. C EXECUTIVE
2.16. CMX-RTX
2.16.1. CMX-TINY+
2.17. Inferno
3. ОС, разработанные специально для портативных устройств
3.1. ITRON
3.2. Windows CE
3.3. JavaOS
3.4. Jbed
3.5. Nucleus RTOS
3.6. EMERALDS
3.7. CORTEX
3.8. DeltaOS
3.9. Palm OS
3.10. Symbian OS (EPOC)
4. Настраиваемость операционных систем
4.1. Адаптация, осуществляемая человеком
4.1.1. Статическая адаптация, инициированная проектировщиком
4.1.2. Динамическая адаптация, инициированная администратором
4.2. Адаптация, инициированная приложением
4.2.1. Адаптация с уровня приложения
4.2.2. Адаптация на уровне ядра
4.3. Автоматическая адаптация
5. Сводные таблицы характеристик свойств ОСРВ
Приложение А. Перечень сокращений
Приложение B. Терминология
Литература
Список ОСРВ, упоминающихся в данном тексте, печати и в Сети
Введение: Особенности операционных систем реального времени
Операционные системы реального времени (ОСРВ) предназначены для обеспечения интерфейса к ресурсам критических по времени систем реального времени. Основной задачей в таких системах является своевременность (timeliness) выполнения обработки данных.
В качестве основного требования к ОСРВ выдвигается требование обеспечения предсказуемости или детерминированности поведения системы в наихудших внешних условиях, что резко отличается от требований к производительности и быстродействию универсальных ОС. Хорошая ОСРВ имеет предсказуемое поведение при всех сценариях системной загрузки (одновременные прерывания и выполнение потоков).
Существует некое различие между системами реального времени и встроенными системами. От встроенной системы не всегда требуется, чтобы она имела предсказуемое поведение, и в таком случае она не является системой реального времени. Однако даже беглый взгляд на возможные встроенные системы позволяет утверждать, что большинство встроенных систем нуждается в предсказуемом поведении, по крайней мере, для некоторой функциональности, и таким образом, эти системы можно отнести к системам реального времени.
Принято различать системы мягкого (soft) и жесткого (hard) реального времени. В системах жесткого реального времени неспособность обеспечить реакцию на какие-либо события в заданное время ведет к отказам и невозможности выполнения поставленной задачи. В большинстве русскоязычной литературы такие системы называют системами с детерминированным временем. При практическом применении время реакции должно быть минимальным. Системами мягкого реального времени называются системы, не попадающие под определение "жесткие", т.к. в литературе четкого определения для них пока нет. Системы мягкого реального времени могут не успевать решать задачу, но это не приводит к отказу системы в целом. В системах реального времени необходимо введение некоторого директивного срока (в англоязычной литературе – deadline), до истечения которого задача должна обязательно (для систем мягкого реального времени – желательно) выполниться. Этот директивный срок используется планировщиком задач как для назначения приоритета задачи при ее запуске, так и при выборе задачи на выполнение.
Мартин Тиммерман сформулировал следующие необходимые требования для ОСРВ [DEDSYS]:
- ОС должна быть многозадачной и допускающей вытеснение (preemptable),
- ОС должна обладать понятием приоритета для потоков,
- ОС должна поддерживать предсказуемые механизмы синхронизации,
- ОС должна обеспечивать механизм наследования приоритетов,
- поведение ОС должно быть известным и предсказуемым (задержки обработки прерываний, задержки переключения задач, задержки драйверов и т.д.); это значит, что во всех сценариях рабочей нагрузки системы должно быть определено максимальное время отклика.
В течение последних 25-30 лет структура операционных систем эволюционировала от монолитной к многослойной структуре ОС и далее к архитектуре клиент-сервер. При монолитной структуре ОС состоит из набора модулей, и изменения одного модуля влияют на другие модули. Чем больше модулей, тем больше хаоса при эксплуатации такой системы. Кроме того, невозможно распределить ОС в многопроцессорной системе. В многослойной структуре изменения одного слоя влияют на соседние слои; кроме того, обращение через слой невозможно. Для систем реального времени должно быть обеспечено прямое обращение к каждому слою ОС, а иногда напрямую к аппаратуре.
Основной идеей клиент-серверной технологии в ОС является сведение базиса ОС к минимуму (планировщик и примитивы синхронизации). Вся остальная функциональность выносится на другой уровень и реализуется через потоки или задачи. Совокупность таких серверных задач отвечает за системные вызовы. Приложения являются клиентами, которые запрашивают сервисы через системные вызовы.
Клиент-серверная технология позволяет создавать масштабируемые ОС и упрощает распределение в многопроцессорной системе. При эксплуатации системы замена одного модуля не вызывает эффекта “снежного кома”; кроме того, сбой модуля не всегда влечет за собой отказ системы в целом. Появилась возможность динамической загрузки и отгрузки модулей. Главной проблемой в этой модели является защита памяти, поскольку серверные процессы должны быть защищены. При каждом запросе сервиса система должна переключаться с контекста приложения на контекст сервера. При поддержке защиты памяти время переключения с одного процесса на другой увеличивается.
Как правило, большинство современных ОСРВ построено на основе микроядра (kernel или nucleus), которое обеспечивает планирование и диспетчеризацию задач, а также осуществляет их взаимодействие. Несмотря на сведение к минимуму в ядре абстракций ОС, микроядро все же должно иметь представление об абстракции процесса. Все остальные концептуальные абстракции операционных систем вынесены за пределы ядра, вызываются по запросу и выполняются как приложения.
Рассмотрим концептуальные абстракции операционной системы через призму требований к системам реального времени.