Особенности проектирования оснований сооружений, возводимых на засоленных грунтах
7.1(7.1). Основания, сложенные засоленными грунтами, должны проектироваться с учетом их особенностей, обуславливающих:
образование при длительной фильтрации воды и выщелачивании солен суффозионной осадки ;
изменение в процессе выщелачивания солей физико-механических свойств грунта, сопровождающееся, как правило, снижением его прочностных характеристик;
набухание или просадку грунтов при .замачивании;
повышенную агрессивность подземных вод к материалам подземных конструкций за счет растворения солей, содержащихся в грунте.
7.2. В результате проведения инженерно-геологических изысканий в районах распространения засоленных грунтов должны быть установлены:
условия залегания засоленных грунтов (толщина слоя, литологические особенности, распространение по площади и глубине);
форма, размер, характер распределения солей (прослои, линзы, точечные вкрапления н их скопления и т. д.); степень кристаллизации и дисперсности солей (кристаллы, друзы, тонкодисперсные присыпки, соли в виде цемента или обволакивающие частицы);
качественный и количественный состав солей в грунте; типы засоленных грунтов, их генезис, взаимосвязь степени и характера засоленности с литологическим составом и условиями залегания;
значение относительного суффозионного сжатия и начального давления суффозионного сжатия , количественные закономерности изменения физико-химических и механических свойств засоленных грунтов во времени в процессе выщелачивания солей;
гидрогеологические, гидрологические и гидрохимические условия площадки строительства (минерализация и состав поверхностных и подземных вод); характер возможного передвижения подземных вод в грунтах (гравитационное, капиллярное, осмотическое);
прогноз схемы фильтрационного потока в основании фундаментов сооружения (вертикальная, горизонтальная); скорость движения потока, проницаемость грунтов;
прогноз повышения уровня подземных вод или длительного обводнения засоленных грунтов в основании фундаментов сооружений в процессе их эксплуатации;
влияние климатических и геоморфологических условий, а также хозяйственной деятельности человека (техногенных факторов) на развитие процессов засоления и расселения грунтов, формы и размеры их проявления;
опыт строительства в аналогичных грунтовых условиях;
данные о деформациях существующих зданий и сооружений, возведенных и эксплуатируемых в аналогичных грунтовых условиях.
7.3. Образцы засоленных грунтов отбирают при инженерно-геологических изысканиях для определения химических и физико-механических свойств и установления в лабораторных условиях характера изменения этих свойств в процессе выщелачивания солей.
Для этой цели необходимо вначале отобрать характерные типовые образцы, предназначенные для подробных химических анализов. В дальнейшем отбирают образцы для массовых химических анализов, при которых определяют только степень засоления грунтов и качественный состав солей. По специальному заданию определяются емкость поглощения и состав обменных катионов засоленного грунта. Образцы, предназначенные для химического анализа, могут иметь нарушенную структуру и отбираться при относительно равномерном распределении солей в грунте в виде сплошной бороздовой пробы массой в 1-1,5 кг. В грунтах, содержащих соли в виде линз, прослоев, скоплений и т.д., опробование должно производиться из каждого характерного участка толщи.
В отчетах об инженерно-геологических изысканиях следует давать детальное описание солевых включений (их количество на единицу площади или объема, размеры и т.д.).
Для лабораторных исследований механических свойств засоленных грунтов следует отбирать образцы природной структуры.
7.4. Содержание легкорастворимых солей следует определять с помощью водной вытяжки, а среднерастворимых - с помощью соляно-кислой вытяжки.
Водная вытяжка. Отбирают среднюю пробу грунта (300-500 г), растирают его и просеивают через сито в 1 мм. Определяют гигроскопическую влажность грунта. Отбирают «среднюю аналитическую пробу» - 50 или 100 г (в зависимости от качественно-количественной пробы на Сl— и SO42—). К навеске прибавляют пятикратное (1:5) количество дистиллированной воды, лишенной СО2 (если в грунте содержится большое количество сульфата натрия, то лучше приготовить вытяжку 1:10). Смесь взбалтывают в течение 5 мин, после чего вытяжку полностью отфильтровывают через фильтр из плотной бумаги.
Соляно-кислая вытяжка. Из воздушно-сухого грунта, просеянного через сито 0,25 мм, берут навеску 2,5 г из расчета на абсолютно сухую массу. Разрушают карбонаты крепкой соляной кислотой (1:1). Замачивают навеску в 125 см2 соляной кислоты 0,2 н концентрации (соотношение грунта к кислоте 1:50), тщательно перемешивают и оставляют в течение 12 ч. Затем раствор отфильтровывают в мерную колбу (250 мл). Остаток на фильтре промывают соляной кислотой (0,2 н) до отрицательной реакции на Са2+ и SO42—. Фильтр с осадком прокаливают в тигле и определяют силикатную часть грунта. Фильтрат в колбе доливают до отметки дистиллированной водой и используют для дальнейших определений.
Анализ водной вытяжки производят по общепринятым методикам с определением величины сухого остатка, рН и содержания ионов СO3—, НСО3—, Сl—, SO42—, Ca2+, Mg2+, Na+, K+ в мг-экв на 100 г породы или в процентах к массе породы.
По результатам анализа соляно-кислой вытяжки определяют содержание гипса, а также сульфат-, кальций- и магний-ионов в процентах к массе абсолютно сухого грунта.
7.5. При проектировании оснований следует учитывать, что в процессе выщелачивания солей из грунта изменяются его физико-механические и химические свойства: пластичность, гранулометрический состав, пористость, плотность частиц, фильтрационные свойства, прочностные и деформационные характеристики, солевой состав и степень засоления грунта.
7.6(7.2). Засоленные грунты характеризуются относительным суффозионным сжатием , определяемым, как правило, полевыми испытаниями статической нагрузкой с длительным замачиванием, а для детального изучения отдельных участков
строительной площадки - дополнительно лабораторными методами (компрессионно-фильтрационными испытаниями).
При наличии результатов изысканий и опыта строительства в аналогичных инженерно-геологических условиях относительное суффозионное сжатие допускается определять только лабораторными методами.
7.7. Значения относительного суффозионного сжатия и начального давления суффозионного сжатия следует определять в лабораторных условиях по ГОСТ 25585-83, а в полевых условиях - с учетом «Рекомендаций по определению деформационных свойств засоленных грунтов в полевых и лабораторных условиях. НИИОСП, М., 1980».
Количество полевых и лабораторных испытаний по определению относительного суффозионного сжатия назначается в зависимости от класса и конструктивных особенностей сооружения, инженерно-геологических условий площадки, сроков проведения и стадии изысканий, опыта строительства в аналогичных грунтовых условиях.
При наличии сопоставимых результатов полевых и лабораторных исследований допускается при расчете величины относительного суффозионного сжатия ; использовать эмпирические коэффициенты, корректирующие данные лабораторных испытаний засоленных грунтов по результатам полевых испытаний в аналогичных грунтовых условиях.
Для предварительных расчетов суффозионной осадки основания при строительстве сооружений I и II классов и для окончательных расчетов при строительстве сооружений III класса допускается определять значение относительного суффозионного сжатия глинистых загипсованных грунтов (суглинки - =0,02-0,04; =0,08-0,l2; =1,2-1,б г/см3; е=0,75-1,1; супеси - =0,01-0,03; =0,03-0,07; =1,4-1,45 г/см3; е=0,9-1) по формуле
(212)
где - коэффициент (зависящий от вида грунта, содержания гипса и давления), принимаемый по табл. 127;
- начальное содержание гипса в грунте, доли единицы;
- начальная плотность сухого грунта, г/см3;
- плотность частиц гипса, г/см3;
- степень выщелачивания, доли единицы;
п - коэффициент, принимаемый для суглинков n=1, для супесей n=1/3.
7.8 (7.3). Нормативное значение следует определять в соответствии с требованиями обязательного прил. 2 (см. п. 7.24 (26прил.2)).
Расчетное значение допускается принимать равным нормативному значению, полагая в формуле (1) коэффициент надежности по грунту =1.
Таблица 127
Вид грунта | Содержание гипса, | Значение коэффициента при давлении, МПа | |||
доли ед. | 0,1 | 0,2 | 0,3 | 0,4 | |
0,1 | 0,86 | 0,70 | 0,52 | 0,43 | |
Супесь | 0,2 | 0,95 | 0,90 | 0,83 | 0,76 |
0,3 | 0,97 | 0,95 | 0,90 | 0,85 | |
0,1 | 0,08 | 0,15 | 0,30 | 0,46 | |
0,2 | 0,15 | 0,27 | 0,50 | 0,84 | |
Суглинок | 0,3 | 0,45 | 0,60 | 0,80 | 1,10 |
0,4 | 0,85 | 0,96 | 1,07 | 1,30 | |
0,5 | 1,08 | 1,15 | 1,22 | 1,38 |
7.9(7.4). Расчет оснований, сложенных засоленными грунтами, должен производиться в соответствии с требованиями разд. 2. Если засоленные грунты являются просадочными или набухающими, следует учитывать соответственно требования разд. 3 и 4.
Деформации основания необходимо определять с учетом осадки от внешней нагрузки, просадки, набухания или усадки и суффозионной осадки.
Суффозионную осадку следует определять в соответствии с указаниями пп. 7.24-7.28 (обязательного прил. 2).
При, отсутствии возможности длительного замачивания грунтов и выщелачивания солей деформации основания определяются как для незасоленных грунтов исходя из деформационных характеристик грунтов при полном водонасыщении.
7.10. Осадка уплотнения грунта определяется как для обычных незасоленных грунтов с использованием деформационных характеристик грунтов естественной влажности.
При проектировании оснований, сложенных засоленными просадочными грунтами, необходимо учитывать, что мероприятия, ликвидирующие просадочность (предварительное замачивание, уплотнение трамбовками, химическое закрепление), практически исключают возможность развития суффозионной осадки. Расчет суффозионной осадки в этих грунтах должен производиться в том случае, когда фактическое среднее давление на основание под фундаментами сооружения не превышает начального просадочного давления грунта и отсутствуют мероприятия, устраняющие просадочные свойства грунта.
7.11.Максимальные к средние суффозионные осадки, разность осадок и крены отдельных фундаментов и сооружения в целом необходимо рассчитывать с учетом неравномерности замачивания основания, схемы фильтрационного потока в пределах отдельного фундамента или контура сооружения, неоднородности распределения солей в грунте по площади и по глубине основания.
Расчет суффозионной осадки основания, сложенного грунтами с легкорастворимыми солями и загипсованными песками, следует выполнять в пределах зоны суффозионной осадки, условно ограничиваемой глубиной сжимаемой толщи п. 2.218 (6 прил. 2) или линейно деформируемого слоя конечной толщины в соответствии с указаниями разд. 2.
В случае длительного обводнения таких грунтов в процессе строительства и эксплуатации сооружения принимается, что в пределах сжимаемой толщи или линейно деформируемого слоя грунты подвергаются полному расселению, т.е. степень выщелачивания =1.
7.12. При расчете суффозионных осадок оснований, сложенных загипсованными пылевато-глинистыми грунтами, принимается, что:
длина зоны, в пределах которой возможно выщелачивание гипса (выщелачиваемая зона ), ограничена условием предельного насыщения гипсом фильтрующей жидкости;
в процессе фильтрации происходит развитие выщелачиваемой зоны, т.е. увеличивается ее длина и уменьшается содержание гипса в грунте в направлении движения фильтрационного потока;
суффозионные осадки основания имеют место только в пределах выщелачиваемой зоны и нарастают по мере ее развития.
7.13. При расчете суффозионных деформаций основания, сложенного загипсованными пылевато-глинистыми грунтами, необходимо принять схему фильтрационного потока в основании фундамент (рис. 69).
Рис. 69. Схемы замачивания основания фундаментов
а - равномерная вертикальная фильтрация в бесконечность; б - горизонтальная фильтрация в слое ограниченной толщины
При расчете суффозионных осадок основания по схеме 1 вначале следует определить состояние выщелачиваемой зоны, т.е. ее длину и распределение в ней гипса в расчетный момент времени. Для этого в пределах сжимаемой толщи основания необходимо выделить слои с различным содержанием гипса (рис. 70). При этом начальное распределение гипса в грунте представляется в виде ступенчатой функции . Выделенные слои разбиваются на более мелкие, толщиной 0,5 м, для которых производится расчет процесса расселения.
Рис. 70. Схема для расчета расселения неоднородного основания при вертикальной фильтрации
1 - границы слоев с различным содержанием гипса; 2 - границы расчетных слоев; 3 - расчетный слой; 4 - направление фильтрации; 5 - начальная эпюра относительного содержания гипса
Если основание сложено однородным грунтом, то начальное содержание гипса принимается постоянным в пределах зоны суффозионной осадки , а вся зона разбивается на слои по 0,5 м (рис. 71).
Рис. 71. Схема для расчета рассоления однородного основания при вертикальной фильтрации
1 - границы расчетных слоев; 2 - направление фильтрации; 3 - начальная эпюра .относительного содержания гипса
При расчете суффозионных деформаций в случае фильтрации по схеме 1 (см. рис. 69) зона суффозионной осадки в основании фундамента ограничивается глубиной п. 2.218 (6, прил. 2), где суммарные вертикальные напряжения от нагрузки фундамента и собственного веса грунта равны начальному давлению суффозионного сжатия .
Значение , соответствует давлению, при котором =0,01. Если на расчетный момент времени , расчет суффозионной осадки следует производить только в пределах выщелачиваемой зоны. При расчет осадки необходимо выполнять в пределах сжимаемой толщи (рис. 72). Распределение напряжений в грунте от веса фундамента (сооружения) принимается в первом случае по схеме линейно деформируемого слоя конечной толщины, а во втором - линейно деформируемого полупространства.
Рис. 72. Схема для расчета деформаций при вертикальной фильтрации
После разбивки основания на слои следует определить количество оставшегося в твердой фазе гипса в расчетный момент времени последовательно в каждом слое, начиная с верхнего. При этом слой, в котором содержание гипса будет равно начальному, является нижней границей выщелачиваемой зоны. Для нижележащих слоев расчет растворения гипса производить не следует.
Количество оставшегося в твердой фазе гипса в i-ом слое на расчетный момент времени t следует определять по формуле
(213)
где - начальное массовое содержание гипса в i-ом слое, доли единицы;
- координата середины i-го слоя, м;
- приведенное время;
- приведенная координата для середины i-го слоя;
- приведенная масса.
Значения т, следует определять по формулам
(214)
(215)
(216)
где t - время эксплуатации сооружения (расчетный момент времени), сут;
- коэффициент растворения, сут-1;
- плотность сухого грунта, т/м3;
- скорость фильтрации, м/сут;
- недостаток насыщения, доли единицы;
- концентрация насыщения фильтрующей воды гипсом, т/м3;
- концентрация гипса в воде на участке входа ее в загипсованный грунт, т/м3;
- число слоев, лежащих выше i-го слоя
Методика определения коэффициента растворения в полевых условиях приведена в «Рекомендациях по расчету суффозионных деформаций оснований зданий и сооружений, возводимых на загипсованных грунтах. НИИОСП. М., 1983 г.», а в лабораторных условиях - в «Методических указанных по оценке растворения засоленных грунтов в теле и основании гидротехнических сооружений. ВНИИ ВОДГЕО. М., I960».
Недостаток насыщения определяется по формуле
(217)
где - коэффициент фильтрации, м/сут.
Недостаток насыщения имеет следующие ориентировочные значения: для песков, у которых равно 0,1; 0,2 и 0,5 мм ( - диаметр частиц грунта, составляющих 50% по массе), значение , соответственно равно 0,18; 0,25 и 0,28, для супесей =0,05-0,015, для суглинков =0,01-0,1.
Степень выщелачивания для каждого слоя определяется по формуле
(218)
Для каждого расчетного слоя определяется значение относительного суффозионного сжатия соответствующего данной степени выщелачивания.
7.14. Деформации оснований при фильтрации по схеме 2 (см. рис. 69) следует рассчитывать с учетом развития во времени выщелачиваемой зоны в горизонтальном направлении и изменяющейся неоднородности деформационных свойств грунтов основания в пределах площади фундамента или контура сооружения.
Вначале необходимо установить состояние выщелачиваемой зоны в основании фундамента на расчетный момент времени. Для установленного состояния выщелачиваемой зоны следует определить осадку сторон фундамента и его крен.
При расчете состояния выщелачиваемой зоны начальное содержание гипса в грунте принимается постоянным ( ) как по глубине загипсованной толщи, так и по площади фундамента и в его окрестности (рис. 73), и равным среднему значению загипсованности толщи.
Разбивку основания на вертикальные слои шириной по 0,5 м следует производить в пределах от до , где - расстояние от входного участка фильтрационного потока до фундамента, м, - ширина фундамента, м. Входным участком фильтрационного потока ( ) считается вертикальная плоскость, примыкающая к источнику замачивания.
Расчет состояния выщелачиваемой зоны следует производить в соответствии с указаниями п. 7.13, при этом направление формирования и перемещения выщелачиваемой зоны принимается горизонтальным.
Рис. 73. Схема для расчета расселения основания при горизонтальной фильтрации
1 - входной участок фильтрационного потока; 2 - границы расчетных слоев; 3 - расчетный слой; 4 - направление фильтрации
7.15 (7.5). Расчетное сопротивление R основания, сложенного засоленными грунтами, при возможности длительного замачивания грунтов и выщелачивания солей вычисляется по формуле (33(7)) с использованием расчетных значений прочностных характеристик ( и ), полученных для грунтов в водонасыщенном состоянии после выщелачивания солей.
При невозможности длительного замачивания грунтов и выщелачивания солей расчетное сопротивление основания следует определять по формуле (33(7)) с использованием прочностных характеристик, полученных для засоленных грунтов в водонасыщенном состоянии.
7.16. При расчете значения R для частично или полностью выщелоченных грунтов коэффициент условий работы грунтового основания в формуле (33(7)) для загипсованных суглинков с начальным содержанием гипса <20 % принимается =l,1, а для суглинков с >20 % и для всех загипсованных супесей =1.
Коэффициент условий работы сооружения во взаимодействии с основанием принимается =1.
Коэффициент k при определении прочностных характеристик в лабораторных условиях в приборах трехосного сжатия и в полевых условиях методом сдвига целика принимается k=1, а при определении в лабораторных условиях в приборах одноплоскостного среза и по таблицам - k=1,1.
7.17(7.6). При расчетных деформациях основания, сложенного засоленными грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться водозащитные мероприятия и в случае необходимости следующие мероприятия в соответствии с указаниями пп, 2.291-2,295 (2.67-2.71):
конструктивные мероприятия;
частичная или полная срезка засоленных грунтов с устройством подушки из глинистых грунтов;
прорезка толщи засоленных грунтов глубокими фундаментами;
закрепление или уплотнение грунтов;
предварительное расселение грунтов;
комплекс мероприятий, включающий водозащитные и конструктивные мероприятия, а также устройство грунтовой подушки.
7.18. При устройстве подушки из глинистых грунтов в основании сооружений предельное содержание солей и степень уплотнения грунта должны устанавливаться по данным специальных исследований и зависят от значений действующих на основание нагрузок, свойств грунта, класса и конструктивных особенностей сооружения, возможных условий замачивания основания.
Прорезку засоленных грунтов столбчатыми фундаментами целесообразно производить при толщине слоя не более 4-5 м. При наличии в основании сооружения грунтов «гипсового» горизонта (осодержанием гипса >35-40 %) заглубление фундамента в нижележащие грунты должно составлять не менее 0,2 м для суглинков н супесей и 0,3 м - для песков.
7.19. При толщине слоя засоленных грунтов свыше 4-6 м рекомендуется устраивать фундаменты из забивных или буронабивных свай. В этом случае при проектировании необходимо учитывать некоторое уменьшение прочности грунта вдоль боковой поверхности сваи в результате выщелачивания солей, а также возможное снижение сопротивления сваи действию горизонтальной нагрузки при наличии в пределах верхней части основания грунтов «гипсового» горизонта.
При проектировании свай в засоленных грунтах особое внимание следует уделять антикоррозионным мероприятиям для защиты тела сваи от агрессивного воздействия вод и грунтов. При работе свай в сильнозасоленных грунтах, а также при наличии высокоминерализованных грунтовых вод обязательным условием является применение свай из особо плотного бетона (с В/Ц£<0,45, водопроницаемостью В-8) на сульфатостойком портландцементе. Если степень агрессивности среды превышает норму, допустимую для особо плотного бетона на сульфатостойком портландцементе, следует предусматривать защитные покрытия, пропитку или введение в бетон недорогих добавок (отходов различных производств). Для повышения стойкости буронабивных свай в высокоминерализованных водах рекомендуется изготовлять их с применением барий содержащего портландцемента (бспц), обладающего высокой стойкостью в агрессивных средах. Допускается применять буронабивные сваи, изготовленные из бетона с В/Ц-0,55 на БСПЦ, в водонасыщенных грунтах при содержании в воде сульфатов (SO42-) до 10000 мг/л без дополнительных антикоррозионных мероприятий.
7.20. При строительстве на загипсованных грунтах, имеющих повышенную пористость и неоднородный гранулометрический состав следует применять гидроизолирующие составы, которые образуют на поверхности частиц покрытия, исключающие растворение а вынос гипса. К таким относятся, например, маловязкие неводные растворы на основе лака этиноля, включающие следующие компоненты: лак этиноль, битум БН-IV. ксилол, хлорпарафин или 5 %-ный раствор NaOH в этиловом спирте.
7.21. При проектировании оснований, сложенных загипсованными песками и глинистыми грунтами, содержащими большое количество легкорастворимых солей ( >5 %), рекомендуется предусматривать предварительное замачивание (расселение) грунтов и последующее их уплотнение. При расселении глинистых грунтов в котловане рекомендуется устраивать песчаные дрены.
7.22.При проектировании сооружений на крупнообломочных засоленных грунтах, имеющих небольшую толщину, рекомендуется осуществлять прорезку толщи засоленного грунта с установкой фундаментов на незасоленные грунты или предусматривать конструктивные мероприятия.
7.23.В случае если основание сложено грунтами «гипсового» горизонта или крупнообломочными грунтами, имеющими большую мощность, рекомендуется предусматривать комплекс мероприятий, включающий водозащитные и конструктивные мероприятия, а также устройство грунтовой подушки.
При высокой степени засоления грунтов рекомендуется применять следующие мероприятия:
прекращение или замедление движения фильтрационного потока (глинистые,. силикатные, битумные, цементные водонепроницаемые завесы);
снижение растворяющей способности грунтовых вод (искусственное насыщение фильтрационного потока солями).