Общий мониторинг технического состояния зданий и сооружений

ТЕМА 3. ОБЩИЙ МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЗДАНИЙ И СООРУЖЕНИЙ. МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЗДАНИЙ И СООРУЖЕНИЙ, НАХОДЯЩИХСЯ В ОГРАНИЧЕННО РАБОТОСПОСОБНОМ ИЛИ АВАРИЙНОМ СОСТОЯНИИ. МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЗДАНИЙ И СООРУЖЕНИЙ, ПОПАДАЮЩИХ В ЗОНУ ВЛИЯНИЯ НОВОГО СТРОИТЕЛЬСТВА, РЕКОНСТРУКЦИИ И ПРИРОДНО-ТЕХНОГЕННЫХ ВОЗДЕЙСТВИЙ. МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ УНИКАЛЬНЫХ ЗДАНИЙ И СООРУЖЕНИЙ.

Воздействий

Цели мониторинга технического состояния зданий (сооружений), попадающих в зону влияния нового строительства и природно-техногенных воздействий, реализуют на основе:

- определения абсолютных и относительных значений деформаций конструкций зданий (сооружений) и сравнения их с расчетными и допустимыми значениями;

- выявления причин возникновения и степени опасности деформаций для нормальной эксплуатации объектов;

- принятия своевременных мер по борьбе с возникающими деформациями или по устранению их последствий;

- уточнения расчетных данных и физико-механических характеристик грунтов;

- уточнения расчетных схем для различных типов зданий (сооружений) и коммуникаций;

- установления эффективности принимаемых профилактических и защитных мероприятий;

- уточнения закономерностей процесса сдвижения грунтовых пород и зависимости его параметров от основных влияющих факторов.

Мониторинг технического состояния зданий (сооружений), попадающих в зону влияния нового строительства и природно-техногенных воздействий, планируют до начала строительства или ожидаемого природно-техногенного воздействия.

Научно-техническое сопровождение и мониторинг нового строительства или реконструкции объектов допускается осуществлять в соответствии с МРДС 02-2008.

При мониторинге технического состояния зданий (сооружений), попадающих в зону влияния нового строительства или реконструкции объектов, устраиваемых открытым способом, используют данные (радиус зоны влияния, дополнительные деформации и др.) в соответствии с МГСН 2.07-2001.

Оценку зоны влияния динамических воздействий на окружающие здания и сооружения при погружении свайных элементов строящихся зданий проводят в соответствии с СНиП 3.02.01-87.

Внешние границы мульды сдвижения на земной поверхности при подземном способе возведения объекта определяют по граничным углам, а внешние границы опасной ее части - по углам сдвижения. Значения этих углов зависят от свойств горных пород и определяются опытным путем. При отсутствии опытных данных значения граничных углов и углов сдвижения определяют в соответствии с приложением П ГОСТ 31937-2011. Углы разрывов принимают на 10° более углов сдвижения.

Определение значений ожидаемых максимальных сдвижений и деформаций земной поверхности и ожидаемых сдвижений и деформаций в точках мульды сдвижений при подземном способе возведения объекта проводят в соответствии с приложением Р ГОСТ 31937-2011.

Общую продолжительность процесса сдвижения земной поверхности над производимой подземной выработкой и период опасных деформаций определяют в соответствии с приложением С ГОСТ 31937-2011.

При мониторинге технического состояния зданий (сооружений), попадающих в зону влияния строительства или реконструкции объектов при подземном способе их возведения, проводят геодезическо-маркшейдерские работы, которые выполняются в процессе всего производственного цикла строительства объекта до затухания процесса деформирования как самого объекта, так и массива грунтовых пород в соответствии с согласованной в установленном порядке проектной документацией.

Составлению программы наблюдений должны предшествовать оценка и прогноз геомеханического состояния породного массива в районе крупного строительства и зоне его влияния на объекты, расположенные на земной поверхности.

Оценку геомеханического состояния до начала строительных работ проводят на основании геологических данных и инженерных изысканий. При этом особое внимание уделяют определению природного поля напряжений, характеристике тектонических нарушений, трещиноватости, слоистости, водообильности, карстообразованию и другим особенностям массива.

Прогноз изменения геомеханического состояния породного массива под влиянием горных работ проводят как для типовых условий строительства и эксплуатации объекта, так и для аварийных ситуаций (разрушение крепи котлованов, прорыв в них плывунов, развитие карстовых образований, активизация древних оползней и т. д.). Прогноз состоит из определения ожидаемых параметров развития геомеханических процессов, основными из которых являются:

- размеры и местоположения зон сдвижения;

- значения максимальных сдвижений и деформаций;

- характер распределения деформаций в мульде сдвижения;

- общая продолжительность процесса сдвижения и периода опасных деформаций.

Инструментальные наблюдения за сдвижением земной поверхности и расположенными на ней объектами проводят в целях получения информации об изменении геомеханического состояния породного массива, на основании которой можно своевременно принимать необходимые профилактические и защитные меры.

Инструментальные наблюдения за сдвижением земной поверхности и сооружений проводят с помощью системы реперов, закладываемых в грунт и конструкции зданий и сооружений, а за сдвижением толщи горных пород - с помощью глубинных реперов, закладываемых в скважины. На застроенных территориях для исключения возможности повреждений подземных коммуникаций места закладки реперов должны согласовываться с органами местной исполнительной власти. Закладка реперов и начальные наблюдения на них должны проводиться до начала строительства. Порядок разбивки наблюдательной сети реперов представлен в приложении Т ГОСТ 31937-2011.

Одновременно с разбивкой наблюдательной сети реперов должны намечаться места для закладки трех исходных реперов, с помощью которых в дальнейшем будет определяться положение опорных реперов профильной линии по высоте и контролироваться их неподвижность.

Для наблюдения за отдельными зданиями (сооружениями), попадающими в зону влияния нового строительства и природно-техногенных воздействий, закладывают стенные и грунтовые реперы. До начала наблюдений обследуют техническое состояние зданий (сооружений), измеряют динамические параметры, составляют паспорта.

Наблюдения за сдвижением земной поверхности, а также за деформациями зданий и сооружений, попадающих в зону влияния строительства подземного сооружения, заключаются в периодическом инструментальном определении положения реперов с фиксированием видимых нарушений, а также всех факторов, влияющих на значения и характер сдвижений и деформаций. Для зданий (сооружений) также проводят измерения их динамических параметров.

Наблюдения за деформациями оснований зданий (сооружений) проводят по ГОСТ 24846. При наблюдениях за зданиями определяют неравномерность оседаний фундаментов, фиксируют трещины и другие повреждения конструкций, надежность узлов их опирания, наличие необходимых зазоров в швах и шарнирных опорах. Для промышленных зданий определяют также относительные горизонтальные перемещения отдельно стоящих фундаментов колонн, крены фундаментов технологического оборудования, а при наличии мостовых кранов - отклонения от проектного положения подкрановых путей: поперечный и продольный уклоны, изменения ширины колеи и приближение крана к строениям.

Определение точности измерения вертикальных и горизонтальных деформаций проводят в зависимости от ожидаемого расчетного значения перемещения. При отсутствии данных по расчетным значениям деформаций оснований и фундаментов допускается устанавливать класс точности измерений вертикальных и горизонтальных перемещений:

I - для зданий (сооружений): уникальных, находящихся в эксплуатации более 50 лет, возводимых на скальных и полускальных грунтах;

II - для зданий (сооружений), возводимых на песчаных, глинистых и других сжимаемых грунтах;

III - для зданий (сооружений), возводимых на насыпных, просадочных, заторфованных и других сильно сжатых грунтах;

IV - для земляных сооружений.

Предельные погрешности измерения крена в зависимости от высоты Н здания (сооружения) не должны превышать следующих значений, мм:

- для гражданских зданий (сооружений) - 0,0001Н;

- для промышленных зданий (сооружений) - 0,0005Н;

- для фундаментов под машины и агрегаты - 0,00001Н.

Геодезическими методами и приборами по наблюдательным реперам измеряют вертикальные и горизонтальные перемещения земной поверхности и, при необходимости, дна котлована. При появлении трещин на земной поверхности в пределах приоткосной зоны организуют дополнительные систематические наблюдения за их развитием по протяженности, ширине и глубине.

Одновременно с инструментальными наблюдениями на земной поверхности проводят маркшейдерские наблюдения непосредственно в подземном сооружении.

По материалам измерений, вычислений и геолого-маркшейдерской документации составляют заключение, содержащее необходимую информацию о состоянии зданий и сооружений, попадающих в зону влияния крупного нового строительства и природно-техногенных воздействий, изменении геомеханического состояния породного массива; степени опасности и скорости развития негативных процессов (при необходимости). К заключению прикладывают документацию, подтверждающую сделанные в нем выводы.

Форма заключения о техническом состоянии объекта, попадающего в зону влияния нового строительства и природно-техногенных воздействий, представлена в приложении У ГОСТ 31937-2011.

Приложение У
(обязательное)

Форма заключения (текущего) по мониторингу технического состояния зданий (сооружений), попадающих в зону влияния нового строительства и

природно-техногенных воздействий

Составляется головной организацией по результатам этапа мониторинга технического состояния зданий (сооружений), попадающих в зону влияния нового строительства и природно-техногенных воздействий.

Заключение по этапу мониторинга технического состояния объектов, попадающих в зону влияния нового строительства и природно-техногенных воздействий
1 Информация, определяющая местонахождение и тип воздействия (эпицентр природно-техногенного воздействия, адрес стройки)  
2 Номер этапа мониторинга  
3 Время проведения этапа мониторинга  
4 Радиус зоны влияния воздействия  
5 Перечень объектов, попадающих в зону влияния воздействия  
6 Головная организация этапа мониторинга  
7 Перечень организаций, проводивших этап мониторинга технического состояния объектов, с указанием, какой объект обследовался и какой организацией  
8 Перечень объектов, категория технического состояния которых соответствует ограниченно работоспособному состоянию  
9 Перечень объектов, категория технического состояния которых соответствует аварийному состоянию  
10 Общая оценка ситуации  
11 Информация, требующая экстренного решения возникших проблем безопасности  

Приложения - Заключения по этапу мониторинга технического состояния каждого объекта, находящегося в ограниченно работоспособном или аварийном состоянии (см. приложение Н).

- Заключения по этапу мониторинга технического состояния каждого объекта, не находящегося в ограниченно работоспособном или аварийном состоянии (см. приложение Л).

- Совмещенный план наблюдательной системы реперов и подземного сооружения.

- Вертикальные геологические разрезы по профильным линиям.

- Ведомости сдвижений реперов в вертикальной и горизонтальной плоскостях по направлению профильной линии.

- Ведомости скоростей смещения реперов.

- Ведомости оседания реперов и измеренных длин интервалов между ними.

- Результаты вычислений по каждому из реперов оседания земной поверхности по всем расчетным интервалам между реперами:

- наклонов, кривизны, радиусов кривизны, горизонтальных деформаций;

- характерных точек мульды сдвижения относительно границ подземного сооружения (границ зоны влияния, точек с максимальными растяжениями и сжатиями, точек с максимальными наклонами, точек с максимальной кривизной;

- участков земной поверхности, на которых образовались сосредоточенные деформации в виде трещин, ступеней и уступов).

Общие положения

Геотехнический мониторинг – комплекс работ, основанный на натурных наблюдениях за поведением конструкций вновь возводимого или реконструируемого сооружения, его основания, в том числе грунтового массива, окружающего (вмещающего) сооружение, и конструкций сооружений окружающей застройки.

Целью геотехнического мониторинга является обеспечение безопасности строительства и эксплуатационной надежности объектов нового строительства или реконструкции и сооружений окружающей застройки за счет своевременного выявления изменения контролируемых параметров конструкций и грунтов оснований, которые могут привести к переход у объектов в ограниченно работоспособное или аварийное состояние

Задачи, решаемые при проведении геотехнического мониторинга, определяются СП22.13330.2011 (пункт 12.2).

Объекты нового строительства и реконструкции, подлежащие геотехническому мониторингу, устанавливаются СП 22.13330.2011 (пункт 12.4) в зависимости от уникальности объекта, уровня ответственности сооружений, категории сложности инженерно-геологических условий и глубины котлована. Уникальность объекта и уровень ответственности сооружения устанавливаютсяв соответствии с Федеральным законом от 30 декабря 2009 г. N384-ФЗ «Технический регламент о безопасности зданий и сооружений», Градостроительным кодексом РФ от 29.12.2004 N190-ФЗ и указаниями ГОСТ 27751.

Сооружения окружающей застройки уровней ответственности КС-3 (повышенный) и КС-2 (нормальный), в т.ч. подземные инженерные коммуникации, подлежат геотехническому мониторингу при их расположении в зоне влияния нового строительства или реконструкции, размеры которой определяются по результатам геотехнического прогноза. При отсутствии результатов геотехнического прогноза влияния возводимого сооружения объекты геотехнического мониторинга окружающей застройки назначаются по предварительной зоне влияния, определяемой в соответствии с указаниями СП22.13330.2011 (пункт 9.36).

Геотехнический мониторинг объектов нового строительства и реконструкции, а также сооружения окружающей застройки, в т.ч. подземных инженерных коммуникаций, осуществляют в соответствии с программой, которая разрабатывается и утверждается в составе проектной документации.

Для сооружений уровня ответственности КС-3 (повышенный) при III категории инженерно-геологических условий или по специальному заданию в других случаях на основании программы разрабатывается проект геотехнического мониторинга (наблюдательной станции).

Наблюдательная станция геотехнического мониторинга в период строительства должна обеспечивать возможность ее последующего включения в структурированную систему мониторинга и управления инженерными системами сооружений (СМИС)в случае, если предусмотрена система мониторинга объекта в период эксплуатации. При этом используемые приборы и оборудование рекомендуется подбирать исходя из условий обеспечения проектного срока действия системы мониторинга в период эксплуатации, требуемой точности и устойчивости к внешним воздействиям, возможности дистанционного снятия показаний

Разработка программы и проекта геотехнического мониторинга, а также его проведение выполняется специализированными организациями, основным направлением деятельности которых является выполнение комплексных инженерных изысканий и проектирование оснований, фундаментов и подземных частей сооружений, располагающими квалифицированным и опытным персоналом, соответствующим сертифицированным оборудованием и программным обеспечением.

Строительных конструкций

Рассмотренные выше системы мониторинга напряженно-деформированного состояния строительных конструкций разрабатываются на основе различных датчиков: тензорезисторов, волоконно-оптических, пьезоэлектрических и струнных. Следовательно, для выбора системы мониторинга необходимо проанализировать датчики, на основе которых она построена.

ЗАО «Триада- Холдинг»

Струнный датчик напряжения.

Струнный датчик напряжения используется для измерения напряжений. Состоит из катушки и струнного элемента с выпусками из металлических стержней с обоих концов. Датчики приваривают к арматурному каркасу или крепят на поверхность металлической конструкции. Датчики отличает повышенная прочность, надежность и герметичность. Данные с датчиков можно считывать как в индивидуальном режиме, так и составе системы сбора данных.

Достоинства: прочный, надежный, простой в работе, подходит для использования при считывании и накоплении данных в дистанционном режиме, герметичен (водонепроницаем), калибруется индивидуально, большая длина кабеля не влияет на устойчивость сигнала, не реагирует на изгибание, встроенный термистор.

Общий мониторинг технического состояния зданий и сооружений - student2.ru

Рис. 1.12 Общий вид датчика напряжений.

Замоноличиваемый струнный тензометр.

Замоноличиваемые струнные тензометры фирмы Soil Instruments предназначены для измерения деформаций в железобетонных конструкциях. Измерительный сенсор датчика состоит из струнного элемента, прикрепленного к специальным фланцам на концах корпуса датчика и вторичного преобразователя в виде электромагнитной катушки.

Корпус датчика изготовлен из нержавеющей стали. Измерительная база составляет 150 мм. Перед заливкой бетона датчик можно крепить к арматуре обычной вязальной проволокой или создавать 2-, 3- или 4-направленную розетку, обеспечивая, таким образом, возможность измерения деформаций в нескольких направлениях. Кроме того, датчик можно замоноличивать в бетонный блок для последующего замоноличивания всего блока (с установленным датчиком внутри) в новую конструкцию или в предварительно прорезанные отверстия в существующей конструкции. После замоноличивания датчика блок с электромагнитной катушкой, установленный на корпусе датчика, фиксирует любые деформации в конструкции.

Датчики можно опрашивать индивидуально либо автоматически в дистанционном режиме (если они являются частью системы сбора данных).

Кабели от датчиков прокладывают к считывающему устройству или измерительному пункту, и их, так же как и датчик, следует предохранять от повреждений во время заливки бетона.

Общий мониторинг технического состояния зданий и сооружений - student2.ru

Рис. 1.13 Замоноличиваемый струнный тензометр.

Беспроводной датчик наклона для измерения относительных смещений конструкции.

Электроуровни представляют собой жидкостные датчики, не содержащие подвижных частей. Они получают питание по мостовой или полумостовой схеме, а их выходная мощность зависит от величины и направления отклонения датчика. В датчик встроены выпрямитель и цифровой радиоприемник. Диапазон работы приемника составляет до 1000 м (в зависимости от модели и условий установки). Для передачи данных в цифровом формате применяется система кодирования сигнала.

Датчик имеет компактные размеры. Устанавливать датчик следует с таким расчетом, чтобы он не был подвержен температурным воздействиям, а также, чтобы при установке и в процессе эксплуатации имелась возможность проводить его обнуление.

Конструкция датчика предполагает установку непосредственно на поверхность конструкции. Датчик потребляет очень мало энергии и не создает электромагнитных помех.

Достоинства прибора: беспроводная связь между датчиком и накопителем данных, срок службы 10 лет (при считывании данных каждый час), передача данных в цифровом формате обеспечивает высокое качество и безопасность работы, возможность построения полного профиля вертикальных смещений, возможность автоматизации работы с помощью программного обеспечения «I-Site».

Общий мониторинг технического состояния зданий и сооружений - student2.ru

Рис. 1.14 Беспроводной датчик наклона.

Струнный датчик нагрузки.

Струнный датчик нагрузки состоит из стального корпуса цилиндрической формы со встроенными струнными чувствительными элементами (до 6 штук) для измерения сжатия цилиндра под действием нагрузки. Прочный многожильный кабель с оплеткой из ПВХ используется для соединения датчика со считывающим устройством через терминал. Как вариант возможно подключение датчиков напрямую к считывающему устройству. Для распределения нагрузки и компенсации неточностей выравнивания при установке под датчик помещают опорную плиту. Еще одну опорную плиту располагают между датчиком и анкером или устройством для натяжения болтов. Чтобы обеспечить получение надежных результатов, плиту замоноличивают так, чтобы ее верхняя грань была установлена плоско и перпендикулярно болту или кабелю.

Терминал требуется для соединения каждого чувствительного элемента датчика. (Показания усредняются считывающим устройством, и значение представляется на дисплее в инженерных единицах).

Общий мониторинг технического состояния зданий и сооружений - student2.ru

Рис. 1.15 Струнный датчик нагрузки.

Струнный датчик давления грунта.

Струнные датчики давления грунта предназначены для измерения давления в грунтовых массивах или насыпных конструкциях. Плоский элемент круглой формы состоит из двух сваренных по периферии пластин из нержавеющей стали, узкий зазор между которыми заполнен гидравлическим маслом; струнный преобразователь соединен с плоским элементом короткой стальной трубкой, образуя закрытую гидравлическую систему.

Датчик (элемент и преобразователь) устанавливают в среде, за которой осуществляется наблюдение, а армированный кабель соединяет его с терминалом, портативным считывающим устройством или накопителем данных. Точность показаний не зависит от длины кабеля.

Общий мониторинг технического состояния зданий и сооружений - student2.ru

Рис. 1.16 Струнный датчик давления грунта.

Датчик трещин BCD-5B.

Общий мониторинг технического состояния зданий и сооружений - student2.ru Датчик трещин создан для измерения трещин, появляющихся в бетонных конструкциях и скалистом основании в шахтах и на карьерах. Обычные датчики трещин обладают большим измерительным усилием и не могут обеспечить высокую точность измерений, если не зафиксированы жестко. Более того, их трудно устанавливать на слабом скалистом грунте. По сравнению с ними для получения точных измерений датчик BCD-5B обладает чрезвычайно малым измеряемым усилием при простоте установки даже на слабом скалистом основании.

Волоконно-оптический датчик деформаций (СВОДД).

Волоконно-оптические датчики могут использоваться в ситуациях, в которых электронные устройства либо вообще нельзя использовать, либо такое использование сопровождается значительными трудностями и расходами.

Специалистами НПК «Мониторинг-Центр» ведутся интенсивные работы по созданию систем строительного мониторинга на базе волоконно-оптических измерительных систем. Сегодня НПК «Мониторинг-Центр» предлагает датчики деформаций и температуры, которые могут быть использованы в широком классе задач по обеспечению контроля уровня безопасности здания.

Технические характеристики комплекса измерения деформаций на базе СВОДД

Наименование параметра Величина
Диапазон измеряемой относительной деформации 0…2·10-2
Погрешность измерения 1,5%
Порог чувствительности 10 με
Удалённость объекта контроля <3000 м
Потребляемая мощность Не более 2 Вт
Температура эксплуатации -30…+60°C
Устойчивость к коррозии да
Влажность при эксплуатации 0…100%
Срок службы Не менее 10 лет
Размеры корпуса датчика 60 мм × 60 мм × 20 мм
Диапазон измерительной базы 0,3 … 0,5 м

Базовым датчиком, используемым в системе мониторинга, является волоконно-оптический датчик деформаций. Датчик имеет несколько вариантов исполнения, позволяющих заливать его в железобетонную конструкцию или крепить на поверхности строительных элементов. Установка датчиков в точках потенциального источника деструкции (большие нагрузки, моменты) регламентируется на стадии проекта. Контроль может вестись как в течение монтажа, так и во время эксплуатации сооружения. Электронный блок обработки сигналов получает постоянную информацию о состоянии конструкции во внутренних и внешних точках контроля. Сопоставление этой информации с проектными данными в постоянном режиме позволяет делать выводы о «здоровье» конструкции.

Измеритель сигналов волоконно-оптических датчиков (ИСВОД)

Технические характеристики.

ИЗЛУЧАТЕЛЬ
Длина волны излучения 820 нм (-30 +70), 1300 нм (-30 +70)
Тип оптического разъема ST
ПРИЕМНИК
Диапазон измерения входной опт. мощности по каждому каналу, 0..-30 дБ
Погрешность расчета относительной мощности при уровнях сигналов на входах каналов 0 Дб не более 0,1 %
Диапазон отображаемых значений относительной мощности +9...-36 дБ
Тип оптического разъема ST
Питание адаптер ~220В/=9В
Габариты, 120x70x35 мм

Используемый в системе мониторинга электронный блок передачи и обработки сигналов (ИСВОД) имеет унифицированную структуру. Передача сигналов может осуществляться как по волоконно-оптическим каналам связи, так и по имеющимся электрическим сетям (что не требует дополнительных работ по оборудованию каналов связи), а также и в беспроводном формате.

Применение волоконно-оптических датчиков ЗАО «Мониторинг-Центр» в строительных конструкциях и сооружениях.

Применение Датчик температуры Цилиндрический датчик деформаций
Фундаментные плиты   +
Надземные конструкции, колонны, ригели, плиты + +
Вентилируемые фасады + +
Режимные скважины, грунты оснований +  
Высокотемпературное производство + +
Особые климатические условия + +
Шахты + +

Вывод:

Датчики, на основе которых построены системы мониторинга обладают рядом достоинств и недостатков.

Тензодатчики. Достоинства: малые габариты и вес; малоинерционость, что позволяет применять тензодатчики как при статических, так и при динамических измерениях; обладают линейной характеристикой; позволяют дистанционно и во многих точках проводить измерения; способ установки их на исследуемую деталь не требует сложных приспособлений и не искажает поле деформаций исследуемой детали.

Основные недостатки тензодатчиков это температурная чувствительность, что в условиях крайнего севера сводит на нет все достоинства тензорезисторов, и малый выходной сигнал, который трудно измерять с высокой точностью.

Струнные датчики. Достоинства: стабильная частота выходного сигнала, нечувствительность к большой длине кабеля, меньшая по сравнению с тензодатчиками чувствительность к окружающей среде.

Основной недостаток однострунных датчиков - резко нелинейная статическая характеристика. У дифференциальных струнных датчиков нелинейность статической характеристики значительно меньше. Точность преобразования струнных датчиков увеличивается, если основной составляющей жёсткости механической системы является жёсткость струны.

Датчики перемещения трансформаторного типа имеют изъян в передаточной характеристике – остаточное нулевое напряжение, возникающее вследствие неточности намоточных данных вторичных обмоток и из-за паразитных индуктивностей.

Наиболее подходящим типом датчиков для применения в условиях крайнего севера и агрессивной среды являются волоконно-оптические датчики. Обладая рядом преимуществ:

- невосприимчивость к электромагнитным помехам;

- устойчивость к воздействиям внешней среды;

- твердотельная структура позволяет выдерживать предельные уровни вибрационных и ударных нагрузок;

- высокая чувствительность и широкополосность позволяют измерять и передавать информацию на значительное расстояние;

- отсутствие взаимной интерференции;

- взрывобезопасность (гарантируется абсолютной неспособностью волокна быть предпосылкой искры);

- высокая коррозионная стойкость, в особенности к химическим растворителям, маслам, воде;

- практически не имеют недостатков.

Наиболее подходящими датчиками для системы мониторинга напряженно-деформированного состояния строительных конструкций являются волоконно-оптические датчики, несмотря на их цену (от 45 до 65 тыс. руб.) они наилучшим образом подходят для работы в агрессивных условиях, а также в условиях крайнего севера (работают при температуре до -60°С). Немаловажным является и тот факт, что максимальное удаление датчика от станции составляет 1000 метров без ухудшения передаваемого сигнала, что является недостижимым результатом для датчиков другого типа.

Примеры проектирования и эксплуатации систем мониторинга конструкций и оснований зданий и сооружений.

ТЕМА 3. ОБЩИЙ МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЗДАНИЙ И СООРУЖЕНИЙ. МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЗДАНИЙ И СООРУЖЕНИЙ, НАХОДЯЩИХСЯ В ОГРАНИЧЕННО РАБОТОСПОСОБНОМ ИЛИ АВАРИЙНОМ СОСТОЯНИИ. МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЗДАНИЙ И СООРУЖЕНИЙ, ПОПАДАЮЩИХ В ЗОНУ ВЛИЯНИЯ НОВОГО СТРОИТЕЛЬСТВА, РЕКОНСТРУКЦИИ И ПРИРОДНО-ТЕХНОГЕННЫХ ВОЗДЕЙСТВИЙ. МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ УНИКАЛЬНЫХ ЗДАНИЙ И СООРУЖЕНИЙ.

Общий мониторинг технического состояния зданий и сооружений

Общий мониторинг технического состояния зданий и сооружений – это система наблюдения и контроля, проводимая по определенной программе, утверждаемой заказчиком, для выявления объектов, на которых произошли значительные изменения напряженно-деформированного состояния несущих конструкций или крена, и для которых необходимо обследование их технического состояния (изменения напряженно-деформированного состояния характеризуются изменением имеющихся и возникновением новых деформаций или определяются путем инструментальных измерений).

Общий мониторинг технического состояния зданий и сооружений проводят для выявления объектов, изменение напряженно-деформированного состояния которых требует обследования их технического состояния.

При общем мониторинге, как правило, не проводят обследование технического состояния зданий и сооружений в полном объеме, а проводят визуальный осмотр конструкций с целью приблизительной оценки категории технического состояния, измеряют динамические параметры конкретных зданий и сооружений (см. приложение Л ГОСТ 31937-2011) и составляют паспорт здания или сооружения (см. приложение М ГОСТ 31937-2011).

Если по результатам приблизительной оценки категория технического состояния здания или сооружения соответствует нормативному или работоспособному техническому состоянию, то повторные измерения динамических параметров проводят через два года.

Если по результатам повторных измерений динамических параметров их изменения не превышают 10 %, то следующие измерения проводят еще через два года.

Если по результатам приблизительной оценки категория технического состояния здания или сооружения соответствует ограниченно работоспособному или аварийному состоянию или если при повторном измерении динамических параметров здания или сооружения результаты измерений различаются более чем на 10 %, то техническое состояние такого здания или сооружения подлежит обязательному внеплановому обследованию.

По результатам общего мониторинга технического состояния зданий и сооружений исполнитель составляет заключение (см. приложение К ГОСТ 31937-2011) по этапу общего мониторинга технического состояния зданий и сооружений и заключения о техническом состоянии каждого здания и сооружения, по которым проводился общий мониторинг технического состояния (см. приложение Л ГОСТ 31937-2011).

Приложение К
(обязательное)

Форма заключения (текущего) по этапу общего мониторинга
технического состояния зданий (сооружений)

Заключение составляется головной организацией по результатам этапа общего мониторинга технического состояния зданий (сооружений).

Заключение по этапу общего мониторинга технического состояния зданий (сооружений)
1 Перечень адресов объектов  
2 Номер этапа мониторинга  
3 Время проведения этапа мониторинга  
4 Головная организация этапа мониторинга  
5 Перечень организаций, проводивших этап мониторинга технического состояния объектов, с указанием, какой объект обследовался и какой организацией  
6 Перечень объектов, категория технического состояния которых соответствует ограниченно работоспособному состоянию  
7 Перечень объектов, категория технического состояния которых соответствует аварийному состоянию  
8 Общая оценка ситуации  
9 Информация, требующая экстренного решения возникших проблем безопасности  

Приложение - Заключения по мониторингу технического состояния каждого объекта при общем мониторинге технического состояния зданий и сооружений города см. в приложении Л.

Приложение Л
(обязательное)

Форма заключения (текущего) по этапу мониторинга технического состояния объекта
при общем мониторинге зданий (сооружений)

Наши рекомендации

Заключение по этапу мониторинга технического состояния объекта при общем мониторинге технического состояния зданий и сооружений
1 Адрес объекта  
2 Номер этапа мониторинга  
3 Время проведения этапа мониторинга  
4 Организация, проводившая этап мониторинга  
5 Предыдущее значение крена объекта вдоль большой оси  
6 Текущее значение крена объекта вдоль большой оси  
7 Предыдущее значение крена объекта вдоль малой оси  
8 Текущее значение крена объекта вдоль малой оси  
9 Предыдущее значение периода основного тона собственных колебаний вдоль большой оси  
10 Текущее значение периода основного тона собственных колебаний вдоль большой оси  
11 Предыдущее значение периода основного тона собственных колебаний вдоль малой оси  
12 Текущее значение периода основного тона собственных колебаний вдоль малой оси  
13 Предыдущее значение периода основного тона собственных колебаний вдоль вертикальной оси  
14 Текущее значение периода основного тона собственных колебаний вдоль вертикальной оси  
15 Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси  
16 Текущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси  
17 Предыдущее значение логарифмического декремента основного