Преимущества и недостатки Risc

Сравнивая достоинства и недостатки CISC и RISC, невозможно сделать однозначный вывод о неоспоримом преимуществе одной архитектуры над другой. Для отдельных сфер использования ВМ лучшей оказывается та или иная. Тем не менее ниже приводится основная аргументация «за» и «против» RISC-архитектуры.

Для технологии RISC характерна сравнительно простая структура устройства управления. Площадь, выделяемая на кристалле микросхемы для реализации УУ, существенно меньше. Так, в RISC I она составляет 6%,а в RISC II - 10%. Как следствие, появляется возможность разместить на кристалле большое число регистров ЦП (138 в RISC II). Кроме того, остается больше места для других узлов ЦП и для дополнительных устройств: кэш-памяти, блока арифметики с плавающей запятой, части основной памяти, блока управления памятью, портов ввода/вывода.

Унификация набора команд, ориентация на потоковую конвейерную обработку, унификация размера команд и длительности их выполнения, устранение периодов ожидания в конвейере — все эти факторы положительно сказываются на общем быстродействии. Простое устройство управления имеет немного вентилей и, следовательно, короткие линии связи для прохождения сигналов управления. Малое число команд, форматов и режимов приводит к упрощению схемы декодирования, и оно происходит быстрее. Применяемое в RISC УУ с «жесткой»логикой быстрее микропрограммного. Высокой производительности способствует и упрощение передачи параметров между процедурами. Таким образом, применение RISC ведет к сокращению времени выполнения программы или увеличению скорости, за счет сокращения числа циклов на команду.

Простота У У, сопровождаемая снижением стоимости и повышением надежности, также говорит в пользу RISC. Разработка УУ занимает меньше времени. Простое УУ будет содержать меньше конструктивных ошибок и поэтому более надежно.

Многие современные CISC-машины, такие как VAX 11/780, VА Х-8600, имеют много средств для прямой поддержки функций ЯВУ, наиболее частых в этих языках (управление процедурами, операции с массивами, проверка индексов массивов, защита информации, управление памятью и т. д.). RISC также обладает рядом средств для непосредственной поддержки ЯВУ и упрощения разработки компиляторов ЯВУ, благодаря чему эта архитектура в плане поддержки ЯВУ ни в чем не уступает CISC.

Недостатки RISC прямо связаны с некоторыми преимуществами этой архитектуры. Принципиальный недостаток - сокращенное число команд: на выполнение ряда функций приходится тратить несколько команд вместо одной в CISC. Это удлиняет код программы, увеличивает загрузку памяти и трафик команд между памятью и ЦП. Недавние исследования показали, что RISC-программа в среднем на 30% длиннее CISC-программы, реализующей те же функции.

Хотя большое число регистров дает существенные преимущества, само по себе оно усложняет схему декодирования номера регистра, тем самым увеличивается время доступа к регистрам,
УУ с «жесткой» логикой, реализованное в большинстве RISC-систем, менее гибко, более склонно к ошибкам, затрудняет поиск и исправление ошибок, уступает при выполнении сложных команд.
Однословная команда исключает прямую адресацию для полного 32-битового адреса Поэтому ряд производителей допускают небольшую часть команд двойной длины, например в Intel 80960.

Суперскалярные процессоры

Суперскалярный процессор - процессор, способный параллельно выполнять несколько команд за один такт. Такой режим работы стал возможен, благодаря наличию в современных процессорах нескольких функциональных устройств.

Суперскалярным (термин впервые был использован в 1987 году) называется центральный процессор (ЦП), который одновременно выполняет более чем одну скалярную команду. Это достигается за счет включения в состав ЦП нескольких самостоятельных функциональных блоков, каждый из которых отвечает за свой класс операций и может присутствовать в процессоре в нескольких экземплярах. Так, в микропроцессоре Pentium III блоки целочисленной арифметики и операций с плавающей запятой дублированы, а в микропроцессорах Pentium 4 и Athlon - троированы.
Суперскалярность предполагает параллельную работу нескольких функциональных блоков, что возможно лишь при одновременном выполнении нескольких скалярных команд. Последнее условие хорошо сочетается с конвейерной обработкой, при этом желательно, чтобы таких конвейеров было несколько, например два или три. Разумеется, в этом случае ступень выборки команд, общая для всех конвейеров, должна в каждом такте извлекать из памяти сразу несколько команд. За этой ступенью располагается блок диспетчеризации, отвечающий за распределение команд по конвейерам.
Появление этой технологии привело к существенному увеличению производительности, в то же время существует определенный предел роста числа функциональных устройств, при превышении которого производительность практически перестает расти, а функциональные устройства простаивают. Частичным решением этой проблемы являются, например, гиперпотоковая технология.



Наши рекомендации