Применение ацп для измерения различных
ФИЗИЧЕСКИХ ВЕЛИЧИН
При проектировании цепей для измерения аналоговых сигналов, необходимо учитывать множество факторов, чтобы в результате измерения получить достоверные данные. Например, при построении ССД на базе резистивных датчиков, необходимо учитывать изменение сопротивления при изменении физической величины; погрешность измерений, вызванная влиянием цепей передачи сигналов; температурный коэффициент изменения сопротивления; погрешность измерения; влияние помех и т.д.
Ситуация усложняется, когда необходимо построить систему, работающую с различными по скорости изменения и точности представления физическими величинами.
Измерение напряжения и тока
Преобразование напряжения и тока в цифровой код используется при построении цифровых вольт- и амперметров. Простейшая схема цифрового вольтметра представлена на рисунке 3.1. Здесь измеряемое напряжение при необходимости усиливается и фильтруется, после чего поступает на вход АЦП. Обработку цифрового кода, полученного с выхода АЦП, осуществляет микроконтроллер, который затем выдает необходимую информацию на устройство индикации. В качестве пребразователя может быть использован внутренний АЦП микроконтроллера.
Рисунок 3.1 – Структурная схема цифрового вольтметра
При использовании 8-битного АЦП удобно использовать ИОН с напряжением 2,55В, в этом случае для диапазона входных напряжений (0…2,55В) существенно упрощается обработка цифрового кода. При использовании в качестве устройства индикации семисегментного индикатора, вместо микроконтроллера может быть использована специализированная микросхема.
Для построения цифрового амперметра может быть использована та же схема, что и для вольтметра, с добавлением преобразователя ток → напряжение. Пример такого преобразователя представлен на рисунке 3.2.
Рисунок 3.2 – Преобразователь ток → напряжение на основе ОУ
Здесь при помощи резистора R в обратной связи операционного усилителя можно настраивать диапазон напряжений на выходе.
Измерение температуры
Температура в большинстве случаев является медленно изменяющейся физической величиной, поэтому для ее измерения можно выбирать АЦП с низкими частотами дискретизации. Погрешность температуры, однако, может варьироваться в широком диапазоне.
Наиболее распространенными типами датчиков, которые можно использовать в схемах измерения температуры, являются термопара, резистивный температурный датчик (РТД), термистор и интегральный датчик температуры.
На рисунке 3.3 представлена зависимость сопротивления термопары от температуры. Как видно, зависимость является нелинейной. Следовательно, при обработке оцифрованного сигнала с датчика, необходимо использовать таблицу соответствия цифрового кода и реальной температуры.
Рисунок 3.3 – Зависимость сопротивления термопары от температуры
Для подачи сигнала с резистивных датчиков на вход АЦП целесообразно использовать дифференциальный способ включения с использованием моста Уитсона, как показано на рисунке 3.4. Дифференциальное включение обеспечивает подавление синфазных помех, что снижает погрешность измерения.
Выбор АЦП для измерения температуры можно продемонстрировать на примере: при использовании платинового РТД-элемента с сопротивлением 100 Ом при 0 ºС и питающем токе 200 мкА номинальное значение диапазона полной шкалы выходного напряжения (при -200…+600 ºС) составляет 66,2 мВ. С учетом того, что температура является медленно изменяющимся сигналом, наиболее целесообразно использовать в данной схеме сигма-дельта АЦП.
Рисунок 3.4 – Дифференциальное включение датчиков
Принципиальная схема измерения температуры с применением сигма-дельта АЦП показана на рисунке 3.5 [4]. АЦП преобразует слабый сигнал резистивного температурного датчика, включенного по четырехпроводной схеме, в цифровой код. Для питания датчика используется источник тока 200 мкА, расположенный в преобразователе. Для устранения эффекта наложения спектров используются простейшие ФНЧ.
Рисунок 3.5 – Принципиальная схема измерения температуры
Данная схема сочетает высокую точность работы четырехпроводной схемы включения РТД-элемента и возможности сигма-дельта преобразователя. По двум проводам РТД протекает питающий ток, а с двух оставшихся напряжение сигнала термо-элемента поступает на дифференциальные входы сигма-дельта АЦП.
Измерение освещенности
Для измерения освещенности в качестве датчиков используются фотодиоды. Фотодиоды преобразуют энергию светового потока в слабый ток, пропорционально уровню излучения источника света. Далее полученный ток преобразуется с помощью предварительного усиления в требуемый для дальнейшей обработки уровень напряжения.
Освещенность, в отличие от температуры, может изменяться с достаточно быстрой скоростью, поэтому сигма-дельта АЦП менее эффективны. Принципиальная схема измерения освещенности с применением АЦП последовательного приближения показана на рисунке 3.6 [4]. Световой поток, попадающий на фотодиод, вызывает в нем появление обратного тока, который протекает через резистор обратной связи RF. Напряжение на аноде фотодиода и неинвертирующем входе усилителя поддерживается на уровне 300 мВ по отношению к потенциалу земли, что помогает избежать искажения выходных сигналов усилителя, близких к потенциалу земли. ФНЧ подавляет высокочастотные составляющие, вносимые в сигнал операционным усилителем, после чего сигнал поступает на вход АЦП последовательного приближения.
Как видно из рисунка, необходимость усиления измеряемого сигнала значительно усложняет схему, требует введения дополнительных аналоговых цепей, которые, в свою очередь, вносят искажения в сигнал, что в конечном итоге увеличивает погршеность получаемых данных.
Для измерения освещенности также можно использовать сигма-дельта АЦП. При этом с одной стороны погрешность измерения повышается из-за невысокого быстродействия АЦП; с другой стороны – снижается, так как используется меньше аналоговых элементов.
Рисунок 3.6 – Принципиальная схема измерения освещенности
Выводы
При проектировании схемы для измерения той или иной физической величины первичными параметрами для выбора АЦП являются входной диапазон этих величин, скорость их изменения и допустимая погрешность измерения. Использование сигма-дельта АЦП позволяет снизить погрешность за счет высокой разрядности и возможности работы с малыми по величине сигналами. АЦП последовательного приближения позволяют получать меньшую погрешность измерения при работе с быстро изменяющимися сигналами; однако требуют введения в схему дополнительных компонентов, которые являются источниками шумов и искажают измеряемый сигнал.