Выбор типа и характеристик устройств ввода-вывода в СРВ.
Существует два механизма выполнения ввода/вывода: прерывания и опрос. Рассмотрим, как задачи взаимодействуют с внешними устройствами.
Контроллеры устройств. Устройства ввода/вывода общаются с операционной системой при помощи контроллеров, которые находятся на интерфейсных платах устройства. Центральный процессор работает именно с контроллером, а не с самим устройством. У контроллера есть набор регистров, используемых для обмена информацией с ЦП. Пример простого контроллера устройства ввода/вывода приведен на рис.9.
Рис.9. Пример простого контроллера устройства ввода/вывода
Поместив блок информации в буфер ввода, контроллер взводит бит в регистре состояния, показывающий, что буфер ввода полон. При выводе используется другой бит, свидетельствующий, что полон буфер вывода. После вывода символа контроллер сбрасывает этот бит. Биты состояния применяются для управления передачей данных между процессором и устройством. Драйверы устройств исполняются центральным процессором и отвечают за работу с устройствами ввода/вывода через их контроллеры. Обычно для каждого типа устройства существует один драйвер.
Ввод/вывод с опросом. Когда используется ввод/вывод с опросом, система должна периодически проверять устройство ввода, чтобы понять, не пришли ли новые данные, или устройство вывода, чтобы выяснить, завершилась ли операция.
При вводе с опросом задача драйвера должна опрашивать устройство ввода, то есть периодически проверять, не установлен ли бит «буфер ввода полон» в регистре состояния. Контроллер взводит этот бит, когда есть новые входные данные. Обнаружив, что бит установлен, драйвер устройства считывает символ и сбрасывает бит.
При выводе драйвер устройства инициирует вывод, а затем периодически проверяет бит «буфер вывода пуст», чтобы узнать, когда завершилась операция. Обнаружив, что бит установлен, драйвер может приступить к выводу следующего символа.
Выбор организации адресного пространства в системах СРВ.
Следующим проблемам выделения памяти в ОСРВ уделяется больше внимания, нежели в операционных системах общего назначения.
Во-первых, скорости выделения памяти. Стандартная схема выделения памяти предусматривает сканирование списка неопределенной длины для нахождения свободной области памяти заданного размера, а это неприемлемо, так как в ОСРВ выделение памяти должно происходить за фиксированное время.
Во-вторых, память может стать фрагментированной в случае разделения свободных её участков уже запущенными процессами. Это может привести к остановке программы из-за её неспособности задействовать новый участок памяти. Алгоритм выделения памяти, постепенно увеличивающий фрагментированность памяти, может успешно работать на настольных системах, если те перезагружаются не реже одного раза в месяц, но является неприемлемым для встроенных систем, которые работают годами без перезагрузки.
Простой алгоритм с фиксированной длиной участков памяти очень хорошо работает в несложных встроенных системах.
Также этот алгоритм отлично функционирует и в настольных системах, особенно тогда, когда во время обработки участка памяти одним ядром следующий участок памяти обрабатывается другим ядром. Такие оптимизированные для настольных систем ОСРВ как Unison Operating System или DSPnano RTOS предоставляют указанную возможность.
Память
Как уже упоминалось выше, задержка на переключение контекста потока напрямую зависит от конфигурации памяти, т.е. от модели защиты памяти. Рассмотрим четыре наиболее распространенных в ОСРВ модели защиты памяти.
Модель без защиты – системное и пользовательское адресные пространства не защищены друг от друга, используется два сегмента памяти: для кода и для данных; при этом от системы не требуется никакого управления памятью, не требуется MMU (memory management unit – специальное аппаратное устройство для поддержки управления виртуальной памятью).
Модель защиты система/пользователь – системное адресное пространство защищено от адресного пространства пользователя, системные и пользовательские процессы выполняются в общем виртуальном адресном пространстве, при этом требуется MMU. Защита обеспечивается страничным механизмом защиты.
Различаются системные и пользовательские страницы. Пользовательские приложения никак не защищены друг от друга. Процессор находится в режиме супервизора, если текущий сегмент имеет уровень 0, 1 или 2. Если уровень сегмента – 3, то процессор находится в пользовательском режиме. В этой модели необходимы четыре сегмента – два сегмента на уровне 0 (для кода и данных) и два сегмента на уровне 3. Механизм страничной защиты не добавляет накладных расходов, т.к. защита проверяется одновременно с преобразованием адреса, которое выполняет MMU; при этом ОС не нуждается в управлении памятью.
Модель защиты пользователь/пользователь – к модели система/пользователь добавляется защита между пользовательскими процессами; требуется MMU. Как и в предыдущей модели, используется механизм страничной защиты. Все страницы помечаются как привилегированные, за исключением страниц текущего процесса, которые помечаются как пользовательские. Таким образом, выполняющийся поток не может обратиться за пределы своего адресного пространства. ОС отвечает за обновление флага привилегированности для конкретной страницы в таблице страниц при переключении процесса. Как и в предыдущей модели используются четыре сегмента.
Модель защиты виртуальной памяти – каждый процесс выполняется в своей собственной виртуальной памяти, требуется MMU. У каждого процесса имеются свои собственные сегменты и, следовательно, своя таблица описателей. ОС несет ответственность за поддержку таблиц описателей. Адресуемое пространство может превышать размеры физической памяти, если используется страничная организация памяти совместно с подкачкой. Однако в системах реального времени подкачка обычно не применяется из-за ее непредсказуемости. Для решения этой проблемы доступная память разбивается на фиксированное число логических адресных пространств равного размера. Число одновременно выполняющихся процессов в системе становится ограниченным.
Фундаментальное требование к памяти в системе реального времени заключается в том, что время доступа к ней должно быть ограничено (или, другими словами, предсказуемо). Прямым следствием становится запрет на использование для процессов реального времени техники вызова страниц по запросу (подкачка с диска). Поэтому системы, обеспечивающие механизм виртуальной памяти, должны уметь блокировать процесс в оперативной памяти, не допуская подкачки. Итак, подкачка недопустима в ОСРВ, потому что непредсказуема.
Если поддерживается страничная организация памяти (paging), соответствующее отображение страниц в физические адреса должно быть частью контекста процесса. Иначе опять появляется непредсказуемость, неприемлемая для ОСРВ. Для процессов, не являющихся процессами жесткого реального времени, возможно использование механизма динамического распределения памяти, однако при этом ОСРВ должна поддерживать обработку таймаута на запрос памяти, т.е. ограничение на предсказуемое время ожидания.
В обычных ОС при использовании механизма сегментации памяти для борьбы с фрагментацией применяется процедура уплотнения после сборки мусора. Однако такой подход неприменим в среде реального времени, т.к. во время уплотнения перемещаемые задачи не могут выполняться, что ведет к непредсказуемости системы. В этом состоит основная проблема применимости объектно-ориентированного подхода к системам реального времени. До тех пор, пока проблема уплотнения не будет решена, C++ и JAVA останутся не самым лучшим выбором для систем жесткого реального времени. В системах жесткого реального времени обычно применяется статическое распределение памяти.
В системах мягкого реального времени возможно динамическое распределение памяти, без виртуальной памяти и без уплотнения.