Особенности предприятий энергетических сетей.

Электричество является универсальным видом энергии, кото­рую можно передавать на большие расстояния, легко распределять и эффективно использовать, превращая в любой другой вид энер­гии или работу.

Надежное обеспечение потребителей электрической энергией стандартных параметров и в необходимом объеме является основной целью функционирования городской системы электроснабжения.

Городская система электроснабжения состоит из трех взаимосвязанных подсистем: 1) электроснабжающая, предназначенная для распределения электроэнергии между отдельными районами города с помощью центров питания и линий электропе­редачи напряжением 35-110 кВ; 2) распределительной, предназна­ченной для распределения энергии между отдельными городскими потребителями с помощью распределительных и трансформатор­ных пунктов, питающих и распределительных ЛЭП; 3) внутренней, предназначенной для распределения электроэнергии между груп­пами или отдельным электроприемниками потребителей. Городские системы электроснабжения имеют несколько уров­ней напряжения: 1) электроснабжающие сети высокого напряжения 35—110(150>—220(330) кВ; 2) питающие и распределительные сети среднего напряжения 6-10-20 кВ.

Для выбора системы построения электрических сетей необхо­димо учитывать мощность и число потребителей, их расположение и расстояние до центров питания, условия надежности электроснабже­ния, возможность и необходимость резервирования отдельных эле­ментов, способы коммутации линий электропередачи, конструкцию трансформаторных подстанций, используемые средства защиты и ав­томатики. Поэтому схемы отличаются большим разнообразием. По принципу построения схемы сети разделяются на разомк­нутые и замкнутые. Разомкнутые сети состоят из отдельных линий и получают питание с одной стороны. Замкнутые сети могут иметь один, два и более источников пита­ния. Преимуществом этой сети является более высокий уровень на­дежности электроснабжения.

В городах распределение электроэнергии напряжением 6-10 кВ осуществляется по радиальным, магистральным и смешанным схе­мам. При радиальной схеме каждая подстанция питается отдельными линиями. Эти схемы просты и надежны, но требуют больших расходов проводов, кабелей и оборудования. При магистральных схемах к одной линии присое­диняется группа из нескольких трансформаторных подстанций. Эти схемы дешевле радиальных, но менее надежны. Поэтому для по­вышения надежности электроснабжения городские подстанции вы­полняются с двумя трансформаторами и подключаются по двухлу-чевой или петлевой схемам. Двухлучевая схема обходится дороже петлевой с резервными перемычками. Однако двухлучевая схема имеет значительные преимущества, так как надежна в эксплуатации и обладает высоким быстродействием. Для питания зданий высотой 9-16 этажей используют ради­альные или магистральные схемы с переключателями на вводах. При выходе из строя одной питающей линии все электроприемники здания подключаются к линии, оставшейся в работе. Для питания зданий высотой 7 этажей и больше, имеющих потребителей I кате­гории, применяют радиальные схемы с (автоматическое включение резерва) АВР на вводах в здание. Важным моментом при проектировании электрических сетей является выбор напряжения. По условиям безопасности все элек­троустановки разделяются ПУЭ (правила устройства электроустановок) на установки до 1 кВ и выше 1 кВ. Опыт проектных организаций в ряде случаев дает однозначный от­вет при выборе напряжения для сетей до 1 кВ. Распределительные сети низкого напряжения промышленных и коммунальных пред­приятий, жилых и общественных зданий сооружаются на напряже­ние 660/380/220 В.

Окончательный выбор напряжений обосновывается технико-экономическим сравнением двух вариантов электрической сети. При этом в одном варианте напряжение берется ближайшим меньшим полученного расчетом, а во втором – ближайшим большим стан­дартным напряжением. Шкала стандартных напряжений принята следующая: 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150 кВ.

Выбор параметров электрической сети представляет собой технико-экономическую задачу и должен производиться совместно с выбором схемы электроснабжения. При этом следует определить: 1) расчетную мощность нагрузок; 2) расположение и мощность ис­точников и центров питания, распределительных пунктов и трансформаторных подстанций; 3) наиболее целесообразную конфигурацию сети; 4) номинальное напряжение на всех участках сети и 5) сечение воздушных и кабельных линий электропередачи. При выборе схемы питания городских районов рекомендуется рассмотреть следующие варианты:

• двухцепные линии без резервирования;

• двухцепная и одноцепная линия с резервированием;

• две двухцепные линии с резервированием.

Схема распределения электроэнергии по территории города должна строиться так, чтобы все ее элементы постоянно находи­лись под нагрузкой. В случае аварии с одним из элементов сети оставшиеся в работе могли воспринять его нагрузку путем ее перераспределения между собой с учетом допустимой перегрузки.

Схемы могут быть одно- и двухступенчатые. На первой ступе­ни распределения электроэнергии от ЦП (центр питания) до РП (распределительный пункт) рекомендуются ра­диальные схемы, так как магистральные здесь не имеют существен­ных преимуществ. При этом отдельные секции РП, нормально рабо­тающие раздельно с АВР на секционном выключателе, присоединя­ются к разным линиям. Следует учитывать, что сооружение РП це­лесообразно, если количество отходящих линий будет больше 10.

Схемы распределения энергии от РП до ТП могут быть как ра­диальные, так и магистральные. Радиальные схемы следует приме­нять для питания больших сосредоточенных нагрузок или когда на­грузки расположены в различных направлениях от источника пита­ния. Радиальное питание двух трансформаторных ТП без сборных шин на первичном напряжении следует осуществлять от разных секций РП отдельными линиями для каждого трансформатора. Ма­гистральные схемы 6-10 кВ должны применятся при соответствую­щем (линейном) расположении подстанций. Число трансформато­ров, присоединяемых к одной магистрали, может быть принято от 2 до 4. Магистральные схемы, с точки зрения надежности питания, могут быть с двумя и более параллельными цепями. В частности, двухцепные магистрали применяются для присоединения двух-трансформаторных подстанций без сборных шин первичного на­пряжения или подстанций с двумя секциями сборных шин.

31. Принципы нормирования труда в ГХ;

Наши рекомендации