Математическая обработка результатов исследований

При выполнении дипломной работ студентами производится математическая обработка полученных результатов, поскольку это позволяет нагляднее проследить динамику отдельных изменений, получить средние величины, уточнить ожидаемые данные и обеспечивает современное представление по оформлению работ.

При исследовании продовольственных товаров в практике встречаются нижепредставленные задачи.

Задача 1.Построение доверительных интервалов для математического ожидания при малом объеме выборки (до 20).

Исследуемый продукт, поступающий в розничную торговую сеть, от одного поставщика в течение нескольких дней по одному или группе показателей. Необходимо уточнить соответствие качества этого продукта требованиям стандарта. Как ритмично поставщик обеспечивает качество вырабатываемого продукта?

Пример. При оценке качества пива "жигулевское" по кислотности на момент поступления в торговую сеть в течение нескольких дней были получены следующие результаты в см3 1 н щелочи на 100 см3 пива: 1,8, 1,8, 1,9, 2,5, 2,2, 2,8, 2,6, 2,4.

Необходимо определить среднюю величину кислотности пива, исправленное стандартное отклонение средней величины от частных измерений и установить доверительные границы, в пределах которых с вероятностью р=0,95, находится среднее значение х и, таким образом, выявить соответствует ли по кислотности пиво требованиям ГОСТа. Составим вспомогательную таблицу 1.

Таблица 1 – Вспомогательная таблица при обработке результатов

№п/п Результат отдельного определения Математическая обработка результатов исследований - student2.ru (х- Математическая обработка результатов исследований - student2.ru ) (х- Математическая обработка результатов исследований - student2.ru )2
1,8 1,8 1,9 2,5 2,2 2,8 2,6 2,4 2,25 -0,45 -0,45 -0,35 +0,25 -0,05 +0,55 +0,35 +0,15 0,2025 0,2025 0,1225 0,0625 0,0025 0,3025 0,1225 0,0225
Сумма 18,0   0,00 1,0400

Продолжение Приложения Б

1. Вычислим среднее значение х n – частных значений хi (среднее арифметическое):

Математическая обработка результатов исследований - student2.ru . (Б.1)

2. Определяем "исправленное" стандартное отклонение (среднеквадратичное отклонение):

Математическая обработка результатов исследований - student2.ru = Математическая обработка результатов исследований - student2.ru .   (Б.2)

3. Определяем возможные отклонение ε среднего значения х в зависимости от принятой доверительной вероятности рх (устанавливается самим исследователем, обычно 0,95 и выше) и числа наблюдений n. e определяет точность метода, рассчитывается по формуле:

Математическая обработка результатов исследований - student2.ru . (Б.3)

где tp1 – коэффициент Стьюдента при заданной надежности и числе степеней свободы (n). В химическом анализе пищевых продуктов вполне достаточна надежность a=0,95, т.е. 95 %-ная вероятность нахождения результата анализа в доверительном интервале х+e. Коэффициент Стьюдента находят в таблице 2.

Таблица 2 – Доверительные значения критерия Стьюдента

n Уровень Р n Уровень Р
0,95 0,99 0,999 0,95 0,99 0,999
12,71 4,30 3,18 2,78 2,57 2,45 2,37 2,31 2,26 2,23 63,68 9,93 5,84 4,60 4,06 3,71 3,50 3,36 3,25 3,17 636,62 31,60 12,92 8,61 6,87 5,96 5,41 5,04 4,78 4,59 ¥ 2,20 2,18 2,16 2,15 2,13 2,12 2,11 2,10 2,09 1,96 3,11 3,06 3,01 2,98 2,95 2,92 2,90 2,88 2,86 2,58 4,44 4,32 4,22 4,14 4,07 4,02 3,97 3,92 3,88 3,29

Продолжение Приложения Б

Из таблицы для n=8 и рх=0,95, tp1=2,37.

Математическая обработка результатов исследований - student2.ru .

4. Устанавливаем доверительные границы х1, и х2, в пределах которых находится среднее значение Х.

Математическая обработка результатов исследований - student2.ru =2,25-0,32=1,93. Математическая обработка результатов исследований - student2.ru =2,25+0,32=2,57. (Б.4)   (Б.5)

Таким образом, пиво "Жигулевское" при поступлении в торговую сеть имеет среднюю кислотность в пределах 1,93-2,57 см3 1 н щелочи на 100 см3, что соответствует требованиям (1,8-2,8 см3) ГОСТа.

Задача 2.Нахождение корреляционных зависимостей между случайными величинами.

Иногда количество частных измерений какой-либо случайной величины невелико, например, равно 7-8. Имеется возможность установить графическую и математическую (в виде уравнения) зависимость этой случайной величины от како-то другой переменной величины, т.е. установить зависимость х и у, а также определить степень тесноты связи между ними с помощью коэффициента корреляции. Это необходимо в том случае, когда измеряется какой-то показатель (или группа показателей) при хранении продукта в течение определенного срока. Например, важно проследить динамику нарастания кислотности молока в процессе хранения при определенной температуре или изменение влажности колбасы при различных режимах и сроках хранения; или установить математическую зависимость между изменением содержания витамина С и сроком хранения яблок и т.д.

Пример 1. Необходимо установить математическую зависимость и графическую зависимость содержания летучих жирных кислот (ЛЖК) в говяжьем мясе 1 сорта 1 категории от времени хранения при температуре 0-4 0С.

Содержание ЛЖК (см3) 0,05, 0,1, 0,15, 0,25, 0,35, 0,45 и срок хранения (час) 1,3,6,9,12,15.

Наносим на корреляционное поле системы координат точки по полученным экспериментальным данным, соединяем их и получаем графическую зависимость между у (содержание ЛЖК) и х (время хранения) – рисунок 1.

продолжение Приложения Б

Математическая обработка результатов исследований - student2.ru

Рисунок 1 – Содержание летучих жирных кислот в говяжьем мясе 1 сорта 1 категории при хранении (0-4 0С)

Для установления математической зависимости между указанными переменными величинами необходимо выявить характер графика. Визуально определяем (по расположению точек), что связь между х и у может быть выражена уравнением вида у=ах+в.

Для нахождения коэффициента «а» и «в» необходимо составить систему 2-х уравнений и решить ее. Но предварительно строим расчетную таблицу 3.

Таблица 3 – Расчетная таблица

х х2 у у2 ху Математическая обработка результатов исследований - student2.ru =0,0294х-0,0035 Данные полученные по найденному уравнению
0,05 0,1 0,15 0,25 0,35 0,45 0,0025 0,01 0,0225 0,0625 0,1225 0,2025 0,05 0,3 0,9 2,25 4,2 6,75 0,026 0,085 0,173 0,261 0,350 0,440
Сумма 46 1,35 0,4225 14,45  
bn+a Математическая обработка результатов исследований - student2.ru = Математическая обработка результатов исследований - student2.ru ; b Математическая обработка результатов исследований - student2.ru .   6в+46а=1,35; 46В+496а=14,45; (Б.5)   (Б.6)

продолжение Приложения Б

а=(1,35/46)-(6/46)а; а=0,029-0,13в;

46в+496(0,029-0,13в)=14,45; 18,48в=-0,066;

в=-0,0035; а=0,029-0,13·(-0,0035)=0,0294.

Уравнение принимает вид Математическая обработка результатов исследований - student2.ru =0,0294х-0,0035. По этому уравнению находим новые значения Математическая обработка результатов исследований - student2.ru и заносим их в таблицу 3.

Затем строим (рисунок 1) новый выровненный график (используя новые значения Математическая обработка результатов исследований - student2.ru ), который показывает усредненную динамику накопления ЛЖК в мясе в зависимости от срока хранения. Причем, это уравнение действительно при значениях 1≤х≤15.

Находим коэффициент корреляции, показывающий тесноту связи между указанными величинами. По таблице 4 определяем, что теснота связи весьма высокая.

Математическая обработка результатов исследований - student2.ru (Б.7)

Таблица 4 – Зависимость между коэффициентом корреляции и теснотой связи

Величина коэффициента корреляции Теснота связи
0,11-0,30 0,30-0,50 0,50-0,70 0,70-0,90 0,90-0,99 слабая умеренная заметная высокая весьма высокая

Математическая обработка результатов исследований - student2.ru .

Пример 2. Построить калибровочный график по оптической плотности стандартных растворов нитрита для определения содержания нитрита в мясопродуктах.

Данные: содержание нитрита (мкг/см3) в стандартных растворах: 0,2, 0,4, 0,6, 0,8, 1,0, оптическая плотность (усл. ед.) стандартных растворов нитрита 0,15, 0,37, 0,50, 0,73, 0,86.

По экспериментальным данным строим предварительный график (рисунок 2). Поскольку график представляет зигзагообразную линию, то пользоваться им, как калибровочным, нельзя.

продолжение Приложения Б

Математическая обработка результатов исследований - student2.ru

Рисунок 2 – Содержание нитрита

Линию необходимо выровнять, для чего данные обрабатываем методами математической статистики. По характеру расположения точек в поле системы координат устанавливаем, что связь между х (содержание нитрита) и y (оптическая плотность) может быть выражена уравнением у=ах+в.

По табличным данным составляем систему 2-х уравнений и решаем ее методом подстановки (предыдущий пример).

5в+3а=2,61; а=0,92;

3в+2,2а=1,92 в=-0,03.

Таблица 5 – Вспомогательная таблица при обработке результатов

х х2 у у2 ху Математическая обработка результатов исследований - student2.ru =0,92х-0,03 Данные полученные по найденному уравнению
0,2 0,4 0,6 0,8 1,0 0,04 0,16 0,36 0,64 1,00 0,15 0,37 0,50 0,73 0,86 0,0225 0,1369 0,2500 0,5329 0,7396 0,030 0,148 0,300 0,548 0,860 0,15 0,34 0,52 0,71 0,89
Сумма 3,0 2,2 2,61 1,68 1,92  

Уравнение имеет вид Математическая обработка результатов исследований - student2.ru =0,92х-0,03.

продолжение Приложения Б

По этому уравнению определяем новые значения Математическая обработка результатов исследований - student2.ru , заносим в таблицу 5 и по ним строим калибровочный график 2, которым пользуемся в дальнейшей работе.

Определяем коэффициент корреляции:

Математическая обработка результатов исследований - student2.ru

По таблице устанавливаем, что теснота связи между Х и У весьма высокая.

Пример 3. Построить калибровочный график по оптической плотности стандартных редуцирующих сахаров для последующего использования с целью определения содержания редуцирующих сахаров и общего сахара в кондитерских изделиях.

Данные: содержание редуцирующих сахаров (мг) 12, 13, 14, 15, 16, 17, 18, 19, 20, оптическая плотность (усл. ед.) 0,755, 0,744, 0,705, 0,660, 0,621, 0,525, 0,412, 0,277.

По этим данным строим предварительный график в системе координат. Характер расположения точек в корреляционном поле таков, что просматривается криволинейная (параболическая) зависимость между х (содержание редуцирующих сахаров) и у (оптическая плотность). Но не все точки, нанесенные по нашим данным, располагаются на кривой линии (графике), поэтому этой линией пользоваться в качестве калибровочного графика нельзя. Экспериментальные данные необходимо подвергнуть математической обработке. Но обработка будет иная, чем в предыдущих случаях, поскольку параболическая зависимость описывается уравнением вида у=сх2+вх+а. Необходимо определить значение трех коэффициентов "а", "в", "с". Составим расчетную таблицу 6.

Продолжение Приложения Б

Таблица 6 – Вспомогательная таблица при обработке результатов

х у х2 х х4 ху ху Математическая обработка результатов исследований - student2.ru =-0,008х2+0,198х-0,447
0,781 0,755 0,744 0,705 0,660 0,621 0,525 0,412 0,277 9,372 9,815 10,416 10,575 10,560 10,557 9,450 7,828 5,540 112,464 127,824 145,824 158,625 168,960 179,469 170,100 148,732 110,800 0,781 0,792 0,785 0,754 0,703 0,653 0,541 0,429 0,297
5,480 84,113 1322,569  

По табличным данным составляем систему трех уравнений:

Математическая обработка результатов исследований - student2.ru ; (Б.8)

5,48=9а+144в+2364с;

Математическая обработка результатов исследований - student2.ru ; (Б.9)

84,113=144а+2364в+39744с;

Математическая обработка результатов исследований - student2.ru ; (Б.10)

1322,569=2356а+39744в+68262с.

Решаем эту систему с помощью определений III порядка:

а1 в1 с1   =а1в2с33в1с22в3с13в2с11в3с22в1с3
а2 в2 с2
а3 в3 с3

Для этого находим Δ, Δа, Δв, Δс:

окончание Приложения Б

Математическая обработка результатов исследований - student2.ru Математическая обработка результатов исследований - student2.ru Математическая обработка результатов исследований - student2.ru

Математическая обработка результатов исследований - student2.ru Математическая обработка результатов исследований - student2.ru

Математическая обработка результатов исследований - student2.ru Математическая обработка результатов исследований - student2.ru Математическая обработка результатов исследований - student2.ru

После вычисления находим: с= -0.008, в= 0.198, а= -0.447.

Искомое уравнение принимает вид: Математическая обработка результатов исследований - student2.ru =-0.008х2+0.198х-0.447.

По этому уравнению находим новые значения Математическая обработка результатов исследований - student2.ru , заносим их в таблицу и строим график. Получаем калибровочную кривую, которой пользуемся в дальнейшей работе.

Математическая обработка результатов исследований - student2.ru

Рисунок 3 – Содержание нитрита

Наши рекомендации