Ущелья, чаши, каньоны и овраги.

Гребни и холмы, которые используются пилотами для парения, имеют одну общую особенность - малую турбулентность. Если в длинном гребне есть пролом, то это вносит некоторые особенности в характер потока как в нем, так и за ним. Наблюдать это можно на примере ручья, перегороженного дамбой. Рисунок 111 показывает поток и турбулентность вблизи разрыва в гряде при прямом и скошенном ветре. Скорость воздушного потока в проломе будет выше, чем скорость ветра вообще, из-за сжатия. Если разрыв протяженный и сужающийся, то характер течения в нем будет таким, как показано на рисунке 112. Когда ветер дует параллельно длинному пролому или сужающейся долине, поток спокоен с завихрениями и роторами только вблизи склонов и поверхности. В случае же, когда ветер дует под углом к оси долины, то размеры и интенсивность турбулентности в ней увеличиваются, что и отражено на рисунке 113. Несильный ветер может создавать ротор, заполняющий всю долину. Однако термичность приводит к его разрушению и к хаотической турбулентности, как при сильном ветре. Когда основной ветер пересекает долину, в ней самой поток может идти вдоль, прижимаясь к наветренному склону, а турбулентность присутствовать только у подветренного.

ущелья, чаши, каньоны и овраги. - student2.ru

ущелья, чаши, каньоны и овраги. - student2.ru

ущелья, чаши, каньоны и овраги. - student2.ru

Каньоны в высокогорных районах могут создавать свою очень мощную и опасную турбулентность, которая, комбинируясь с прогревом и термичностью, часто создаёт мощные нисходящие потоки внутри каньона, и восходящие вдоль хребтов. Классический пример этого наблюдается в Owens Valley в Калифорнии, а также в Альпах и других крупных горных образованиях. Когда ветер направлен под углом к основной оси каньона, турбулентность и нисходящие потоки могут быть еще суровее (см. рис. 114), хотя на подветренной стороне хребта и в глубине каньона может быть тихо и спокойно. Пересекая такие каньоны необходимо иметь достаточный запас высоты. В более мелких горах выступы и овраги создают турбулентность аналогичным образом, но более слабую (см. рис.115). Пересекать мелкие неровности рельефа можно, облетая их, либо над ними, имея некоторый запас высоты в зависимости от скорости ветра и высоты хребтов или глубины оврагов.

ущелья, чаши, каньоны и овраги. - student2.ru

ущелья, чаши, каньоны и овраги. - student2.ru

ДЕРЕВЬЯ.

Во многих частях света деревья являются естественными и многочисленными препятствиями, от которых пилотам приходится постоянно уклоняться. Они также являются причиной турбулентности. Парение над холмами, покрытыми лесом при отсутствии термичности происходит в условиях большей болтанки, чем над голыми возвышенностями.

ущелья, чаши, каньоны и овраги. - student2.ru ущелья, чаши, каньоны и овраги. - student2.ru Ряд деревьев будет создавать турбулентность из большого количества вихрей, а если они растут очень плотно, то их обтекание будет аналогично длинному гребню. Часто пилоты этим пользуются и ловят восходящие потоки над лесополосами. Понятно, что если деревья голые, без листьев, то набрать над ними высоту невозможно, зато турбулентность за ними обеспечена. На рисунке 116 изображена модель турбулентности, возникающей за одиноким деревом. От множества деревьев вихри перемешиваются. На территории, заросшей лесом, характер течения воздуха до и после него будет различаться (см. рис. 117). Хоте лось бы обратить внимание на большой градиент скорости ветра за деревьями, на высоте вершин. Сильное уменьшение скорости ветра за лесопосадкой называют ветровой тенью или затенением ветра.

Попытки приземлиться на дорогу, окаймленную лесополосами или на просеку при направлении ветра пересекающем их ось, очень опасны. По турбулентности эти места подобны узким долинам (рис. 113). Также могут оказаться небезопасными посадка и взлет на местности, окруженной лесом.

ЗАТЕНЕНИЕ ВЕТРА

Затенение возможно за полосой деревьев, строением или холмом. Выдвижение из нее в свободный поток можно сравнить с сильным порывом или большим градиентом скорости ветра. Как мы узнали в пятой главе, у земли всегда существует определенный градиент скорости ветра. Чем он сильнее, тем серьезнее его влияние на полет. При пролете границы сильного ветрового затенения достаточно сложно справиться с управлением, даже если заранее предполагаешь осложнения и готовишься к ним. Благоразумные пилоты предпочитают не испытывать судьбу и не залетают на подветренную сторону строений, холмов, лесных массивов ни в какой ветер. Если попадание в тень неизбежно, то надо двигаться в направлении, пересекающем ветер.

Особая форма затенения встречается у поверхности в условиях сильного прогрева со стабильными воздушными массами. В этом случае формирующийся слой теплого воздуха настолько устойчив, что некоторое время до отрыва блокирует ветер у земли. Такая ситуация часто встречается возле моря: стабильный морской бриз и сильно прогревающийся воздух над берегом. На верхушке горячего слоя воздуха скорость ветра может резко увеличиваться, что приводит к большому градиенту скорости ветра.

ПОЛЕТЫ В ТУРБУЛЕНТНОСТЬ

В сильную турбулентность лучше не летать, но в любом случае порывы ветра очень частые спутники полетов. На самом деле пилоты-парители жаждут найти толчки, неравномерность потока, потому что они предвестники восходящего потока. Со временем любой пилот осваивает полеты в умеренную турбулентность. Турбулентность создает две проблемы для авиаторов: сложности с управлением и ударные нагрузки на летательный аппарат. Если рассматривать этот вопрос применительно к самолетам, то для решения первой проблемы необходима более высокая скорость, а для уменьшения нагрузок скорость должна быть минимальной. Поэтому надо прийти к какому-то компромиссу. В авиационных кругах есть такое правило: полет в турбулентность со скоростью в 1,5 раза больше минимальной поможет предотвратить чрезмерные нагрузки на крыло при достаточном запасе для управления. Механическая турбулентность у поверхности может принимать очень опасные формы. Вы можете избежать ее, летая на высоте 100 метров или выше, переждав сильный ветер, или совершая посадку на ровную открытую поверхность. Ближе к земле турбулентность состоит из вихрей, ориентированных параллельно поверхности и перепендикулярно ветру, они как будто катятся по земле, как показано на рисунке 118. Это особенно заметно в самом низком слое, порядка нескольких метров от поверхности. Примерно на высоте 20 метров вихри становятся ориентированными произвольно, во всех направлениях и с различной энергией. Посадка в ветер ставит нас лицом к лицу с турбулентностью, которая постоянно меняется, причем неравномерно под каждым крылом. Некоторый запас скорости - хороший помощник при посадке в ветер. Термическая турбулентность может быть везде, от земли до базы облаков. Однако, она жестче вблизи инверсионных слоев и в сильный ветер. Иногда такие ветры дуют в определенном слое воздуха или над некоторой территорией, их надо избегать, если они известны. Несмотря на более сильные ветры на высоте, термическая турбулентность зачастую с высотой становится менее опасной. Она становится более упорядоченной и расширяется. В любом случае лучший путь избежать термической турбулентности - это дождаться уменьшения солнечного прогрева.

ущелья, чаши, каньоны и овраги. - student2.ru

Если не летать вблизи границ различных слоев, то можно избежать попадания в турбулентность среза. Набирая высоту, и, обнаружив турбулентный слой, проще уйти из него, снизившись. Турбулентность среза очень редко распространяется до земли.

Необходимо избегать турбулентности за летящим впереди аппаратом, особенно, если он больше вашего. Подробно это описывается в инструкциях по производству полетов, но главная идея - избежать попадания в спутную струю в течение некоторого времени.

ИТОГИ

Турбулентность всегда рядом. Мы живем в ней, летаем в ней и основная наша задача - избегать ее жестких форм. Позже мы придем к пониманию того, как различные типы турбулентности создаются и что указывает на их присутствие. Использование воды, некоторых моделей и воображения поможет визуализировать, где спрятался дракон турбулентности, а где можно в полете чувствовать себя комфортно.

Пилоты-парители ищут условия с термическими потоками и ветром, чему, естественно, сопутствует турбулентность. Непарящие пилоты ищут условия с минимальной турбулентностью, но даже в этом случае необходимо быть к ней готовым.

ГЛАВА 7.
Местные ветры.

Земля - это планета с огромными водными пространствами, окутанная атмосферой. На ней происходят многие процессы с очень мощной энергетикой от землетрясений, приливов и отливов до тропических ураганов. Мы, люди, только слабые зрители на этом грандиозном спектакле и не можем повлиять даже на обычные погодные явления.

Но в небе достаточно мелких по масштабам пространств, где модели потоков отличаются своей периодичностью и постоянством. К счастью, для пилотов-парителей эти мелкомасштабные циркуляции хорошо изучены и позволяют совершать длительные полеты. Мы называем эти потоки воздуха местными ветрами. Такое название принято в связи с тем, что они возникают от теплового и барического дисбалансов на полосе 30 км и менее. Это микрометеорология.

Отметим, что местные погодные условия хорошо изучены и понятны пилотам, потому что они наблюдают их годами в различные сезоны и при различных метеорологических процессах. Они будут объектом изучения в этой главе: причины возникновения, как их предсказать, как избежать возможных опасностей и использовать для высоких и приятных полетов.

ПРОГРЕВ И ЦИРКУЛЯЦИЯ

Главная движущая сила большинства местных эффектов - это различный прогрев. Это предполагает, что в солнечные дни одна площадь прогревается сильнее, чем соседняя. В главе 1 мы обратили внимание на то, как различные части земной поверхности прогреваются в соответствии с направлением солнечного излучения и тем, как они поглощают или отражают тепло. Основываясь на этом, мы будем разбираться, как работает местная циркуляция. Эта модель очень важна пилотам-спортсменам для определения воздействия ветра и парящих условий.

ущелья, чаши, каньоны и овраги. - student2.ru На рисунке 119 показано, что происходит с воздухом над теплым и холодным участками земной поверхности. Сначала рассмотрим случай с одинаковой температурой на большой территории. Над этой поверхностью изображены линии давления на различных высотах или изобары. Они представляют собой прямые линии, потому что давление воздуха в горизонтальном направлении ведет себя так же, как и температура. Когда начинается солнечный прогрев, участки поверхности, которые более склонны к прогреву, повышают свою температуру и нагревают воздух над собой. Более теплый воздух расширяется и изобары становятся не прямыми, а изгибающимися вверх, как показано на рисунке 119 внизу. Помните, что давление на высоте зависит от того, насколько сильно оно изменилось внизу. Так что, когда нагревающийся воздух расширяется в вертикальном направлении, то все изобары поднимаются на большую высоту, за исключением давления на поверхности.

ущелья, чаши, каньоны и овраги. - student2.ru На рисунке 119 внизу показано, что на одной и той же высоте давление в теплом воздухе выше, чем в холодном. В результате этого поток наверху начинает двигаться в сторону более холодных поверхностей, как показано стрелочкой на рисунке 120.

Этот процесс приводит к тому, что давление над теплой поверхностью уменьшается. Через некоторое время количество воздуха над холодной поверхностью, а значит, и давление возрастет и возникнет обратное течение с холодной поверхности в сторону теплой. В результате возникает циркуляция воздуха, как показано на рисунке 120 внизу. Она существует так долго, пока продолжается солнечный прогрев. Подобный процесс можно получить у себя в квартире: закройте в ванной дверь и примите душ, после чего, открыв дверь, вы ногами почувствуете, как в ванную затекает холодный воздух, а поднятыми руками - вытекающий теплый.

Этот механизм циркуляции является причиной морских бризов, ветров на склонах и других местных ветров. Ночью, когда все остывает, тоже имеет место подобный процесс: ветер у поверхности дует с участков, которые охлаждаются быстрее. Хотелось бы также отметить, что во время сильной дневной термичности циркуляция воздуха от неравномерного прогрева может затормозиться или прекратиться вообще.

Сформулируем очень важный итог - результат вышеприведенных рассуждений:

Наши рекомендации