Прочность при высоких температурах

При обсуждении прочности свойств металла при высоких температурах в качестве критерия чаще всего использовались отношения заданной абсолютной температуры к температуре плавления. Эту безразмерную величину называют гомологической температурой.

Зависимость деформации и механизма разрушения от времени проявления у большинства металлов при гомологической температуре ≈ 0,3 (Для Fe – T = 3000C). Свинец при комнатной температуре находится в высокотемпературных условиях.

При высоких температурах в металлах проявляется свойство ползучести – это явление увеличивает деформации материала с течением времени при постоянной нагрузке. Для определения прочности при высокой температуре проводят испытания на прочность и ползучесть. Зависимость деформации от времени называют кривой ползучести (Рис. 11.1), которую получают на установках (Рис. 11.2).

Прочность при высоких температурах - student2.ru

Рис. 11.1 Кривые ползучести.

В I скорость деформация после приложения нагрузки постепенно уменьшается.

Во II постоянная скорость деформаций.

В III ускоренная ползучесть, скорость деформации увеличивается со временем вплоть до разрушения.

Кроме испытаний на ползучесть для определенной прочности при высокой температуре применяются испытания на длительную прочность. По методике испытаний они отличаются тем, что в ходе испытаний регистрируется только время до разрушения.

Прочность при высоких температурах - student2.ru

Рис. 11.2 Схема испытаний на ползучесть.

Наиболее общим способом предоставления результатов испытаний на длительную прочность является построение кривых длительной прочности:

Прочность при высоких температурах - student2.ru

Рис. 11.3 Кривые длительной прочности.

Разрушение при высоких температурах могут носить вязкий внутризёренный характер, такой характер разрушений соответствует сравнительно невысоким температурам и большой длительности испытаний, при высоких температурах и больших нагрузках разрушение носит хрупкий межзёренный характер. Переход от вязкого разрушения к хрупкому сопровождается изломом кривой длительной прочности.

Концентраторы напряжения снижают пластичность как при высоких, так и при нормальных температурах.

Влияние структуры материала и его состава на жаропрочность

Жаропрочность повышается двумя способами:

Легирование элементами повышающими температуру рекристаллизации и температуру начала диффузионных процессов. Наличие легирующих элементов создает дополнительные фазы (карбиды или интерметаллиды), создает препятствия высокотемпературной ползучести.

Термообработка как правило включает в себя закалку позволяет получить высокодисперсные фазы пересыщенными твердыми растворами и последующий отпуск или старение, в ходе которых выделяются мелкодисперсные упрочняющие фазы. В процессе эксплуатации происходит коагуляция мелкодисперсных фаз и жаропрочность теряется.

Жаропрочные стали и сплавы

Для изготовления объектов теплоэнергетики эксплуатируемых при температурах 450-600градусов Цельсия используются теплоустойчивые низколегированные стали.

К теплоустойчивым относят низколегированные хромомолибденовые стали (12ХМ, 12МХ, 15ХМ, 20ХМЛ) и хромомолибденованадиевые стали (12Х1М1Ф, 15Х1М1Ф, 20ХМФЛ) выпускаемым по ГОСТ 20072, ГОСТ 5520, ГОСТ 4543, техническим условиям и по отраслевым стандартам. Теплоустойчивые стали используются в энергетике химической и нефтяной отраслях для изготовления агрегатов работающих при температуре 450-550 С (для хромомолибденовых) и 550-600 – для хромомолибденванадиевых сталей.

Теплоустойчивые стали обладают повышенной механической прочностью при высоких температурах и при длительных постоянных нагрузках, а также достаточной жаростойкостью.

Применение теплоустойчивых сталей обеспечивает возможность нормальной эксплуатации конструкций в условиях высоких температур при значительных напряжениях и в особых средах, способствующих химическому и механическому разрушению металла в течении длительных сроков эксплуатации - до 100000 ч (около 10 лет).

Табл. 11.1 Прочностные характеристики некоторых сталей при высоких температурах.

марка Прочность при высоких температурах - student2.ru Прочность при высоких температурах - student2.ru
12ХМФ
15Х1МФ
15Х11МФ  
18Х12ВМБФР

При низком уровне напряжений температура эксплуатации может быть повышена.

Для сварных конструкций эксплуатирующихся при более высоких температурах используются высоколегированные стали мартенситного, мартенситно-ферритного, ферритного и аустенитного классов, а также сплавы на основе железа и никеля

ХН77ТЮР Прочность при высоких температурах - student2.ru =200 МПа

Свойства сварных соединений отличаются от свойств основного металла наличием концентрации напряжений ползучести, приводящей к локальным исчерпываниям пластичности, а при длительных выдержках — к хрупким разрушениям даже в зоне мягких прослоек, что нередко имеет место.

В сварных соединениях появляются мягкие прослойки, в которых при повышенных температурах появляются хрупкие разрушения в случае длительных выдержек.

Иногда разрушения в этих прослойках носят смешанный характер — транс- и межкристаллический. Узкие мягкие прослойки часто не обнаруживают уменьшения прочности. Широкие прослойки пластичности не понижают, а нередко сохраняют прочность основного металла.

В сварных соединениях в условиях высоких температур возникают концентрации не только напряжений, но и деформаций, неравномерность которой при ползучести усиливается.

В сварных соединениях часто образуются зоны с неоднородными свойствами металла, наблюдаются дисперсионное упрочнение зерен и одновременно ослабление их границ.

Длительная прочность термически упрочненных сталей может быть невысокой вследствие образования разупрочнения зон термического влияния.

При строгом контроле неразрушающими методами качества сварных соединений и применении в необходимых случаях термической обработки допускаемые напряжения в сварном соединении оцениваются по отношению к прочности основного металла коэффициентом φ, устанавливаемым в зависимости от марки стали и технологического процесса.

Для углеродистых и низколегированных сталей φ = =0,85…1,0 при дуговой автоматической сварке под флюсом, электрошлаковой, контактной и в среде СО2; для всех других видов сварки φ =0,75…1.

При расчете сварных соединений на прочность, работающих при повышенных температурах, определяют допускаемые напряжения с учетом следующих трех отношений:

Прочность при высоких температурах - student2.ru Прочность при высоких температурах - student2.ru Прочность при высоких температурах - student2.ru

где σВ — предел прочности при нормальных температурах: σТ — предел текучести при нормальных температурах; σД.П. — предел длительной прочности; n1=2,5…4,0; n2= 1,5…2,0; n3=1,5…3,0 — коэффициенты запаса для котельных и турбинных установок, варьирующие от ряда параметров.

Из указанных трех отношений выбирают одно, имеющее наименьшую величину.

Наши рекомендации