Расчет конструкций нижних нежилых этажей бескаркасных жилых зданий

1. В настоящем приложении рассмотрены особенности расчета сборных несущих конструкций нижних нежилых этажей жилых зданий, конструктивные решения которых рекомендованы разд. 2 настоящего Пособия.

2. Несущую систему конструкций нижних нежилых этажей рекомендуется рассчитывать совместно с опирающимися на них конструкциями верхних этажей. При расчете здания допускается из несущей системы выделять фрагмент, состоящий из конструкций подвала, техподполья, первого нежилого этажа, технического этажа и типового жилого этажа либо двух типовых этажей, по верху которых приложена нагрузка от веса конструкций вышерасположенных этажей и ветровая нагрузка на них.

При расчете зданий комбинированной системы с каркасными нижними этажами горизонтальные (ветровые) нагрузки рекомендуется передавать на стены лестнично-лифтовых узлов. При расчете зданий стеновой системы со встроенными нежилыми нижними этажами допускается в первом приближении усилия от горизонтальных нагрузок определять как для регулярной системы без учета изменения положения и размеров проемов в нижних этажах. После определения усилий от горизонтальной нагрузки каждая из стен (диафрагм жесткости) рассчитывается с учетом реальной схемы и расположения проемов.

При расчете рекомендуется учитывать, что для зданий высотой 12 этажей и менее, как правило, усилия от ветровых нагрузок не являются определяющим для назначения сечений конструкций и их армирования. Поэтому компоновку несущей системы зданий со встроенными нежилыми помещениями допускается выполнять исходя из вертикальных нагрузок.

3. Несущую систему конструкций нижних этажей рекомендуется рассчитывать с использованием метода конечного элемента (МКЭ). Расчет допускается выполнять в упругой стадии.

При использовании МКЭ рекомендуется:

модель разбивать на прямоугольные элементы так, чтобы размеры простенков и перемычки были кратны размерам сетки;

при арочных проемах дуги окружности заменять прямыми и вводить в углах треугольные плоские элементы;

платформенный стык моделировать в виде прямоугольных элементов с толщиной, равной средней толщине верхней и нижней панелей и модулем упругости, который является обратной величиной от податливости платформенного стыка на сжатие;

стойки каркаса моделировать связями конечной жесткости, которые учитывают также податливость основания;

в плоскую расчетную модель необходимо включать горизонтальные связи между конструкциями, расположенными вдоль одной оси, которые работают в нижнем этаже на растяжение, а выше — на сжатие, с их реальными жесткостными характеристиками;

при расчете стеновых систем в расчетной схеме необходимо учитывать податливость основания;

в зданиях с опиранием перекрытий по трем и четырем сторонам рекомендуется пользоваться для расчета пространственными расчетными схемами с включением стен поперечного и продольного направлений, учитывая связи на сдвиг конечной жесткости (между продольной и поперечной стеной) в уровне перекрытий, это позволит снизить нагрузку на простенок поперечной стены в уровне пола второго этажа, примыкающий к продольной стене, на 10 — 15 % в зависимости от конструкции;

при наличии оси симметрии в расчет включать часть поперечника до оси симметрии, учитывая работу отрезанной части выполнением краевых условий на оси симметрии.

4. Прочность конструкций встроенных этажей и их армирование рекомендуется проверять по интегральным значениям усилий в основных сечениях, полученным исходя из напряжений в этих сечениях.

5. При расчете зданий стеновой системы принимается, что основными сечениями, по которым необходима проверка прочности, являются горизонтальные опорные сечения в уровне пола первого и второго этажей, горизонтальные сечения по верху проемов и вертикальные сечения перемычек первого этажа в местах заделки и в середине пролета; горизонтальные стыки необходимо проверять на действие вертикального давления, перемычку — на растяжение в центре и поперечную силу в заделке, а также момента.

6. При назначении размеров и расположения проемов в первом этаже следует учитывать, что несимметричное расположение проема в первом этаже приводит к неравномерному распределению давления в зоне платформенного стыка; наиболее выгодно располагать проем в первом этаже симметрично так, чтобы проем в типовом этаже находился в зоне перемычки над проемом первого этажа.

7. Размеры простенков в панели первого этажа должны назначаться таким образом, чтобы среднее давление на 1 м простенка не превышало несущей способности 1 м платформенного стыка, при этом в расчетную длину шва над панелью первого этажа могут быть включены участки перемычек длиной 0,5 от ее высоты в месте заделки в простенок. При несимметричном расположении проемов наиболее нагружен меньший по ширине простенок (как правило).

8. Расчет перемычки на действие поперечной и внецентренной продольной сил можно выполнять независимо. Для назначения размеров сечения поперечную силу в перемычке рекомендуется определять как произведение максимального среднего давления на 1 м простенка, умноженного на 0,8 высоты перемычки. Растягивающая сила в перемычке может быть определена как усилие в затяжке условной арки. Для перемычек пролетом от 3,3 до 2,4 м такая условная арка (рис. 1) приближенно имеет пролет, равный пролету перемычки в свету, и высоту, также равную пролету перемычки; растягивающее усилие в ней рекомендуется определять по формуле

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (1)

где q — нагрузка от верхних этажей в уровне пола второго типового этажа; lo — пролет перемычки в свету; hlin — высота перемычки; hmin — минимальная высота перемычки, равная 0,5м.

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

Рис. 1. Схема условной арки для определения растягивающей силы в перемычке первого нежилого этажа

9. Если по результатам упругого расчета расчетные параметры конструкции определяют усилия сжатия в горизонтальном стыке, то данные упругого расчета могут быть использованы для определения прочности и армирования конструкции. Если определяющими являются усилия в перемычке, то рекомендуется применить для расчета упругую расчетную модель, позволяющую снизить расход арматуры на армирование перемычки.

10. Для бескаркасных зданий, в одном панельном нежилом этаже которых стеновые панели имеют большие (более 1,5 м) проемы, допускается приближенный расчет перемычек и стыков стеновых панелей при выполнении следующих конструктивных ограничений: длина панели — не менее 6 м, ширина проема — не более 2,4 м, ширина каждого из простенков — не менее 0,75 от ширины проема, высота сечения перемычки — не менее 1/3 от ее длины (ширины проема), в панели технического подполья проемы расположены под проемом нежилого этажа. Число панелей с большими проемами не превышает трех на каждую секцию.

Если перечисленные ограничения соблюдены, то прочность верхнего стыка и перемычки панели нежилого этажа проверяется по следующим формулам:

при отсутствии проема в стеновой панели жилой части дома

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (2)

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (3)

при наличии в жилом этаже проема, расположенного в плане в пределах проема нежилого этажа и имеющего ширину, меньшую половины ширины проема нежилого этажа (см. рис. 1):

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (4)

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (5)

В формулах (2) — (5) N — равнодействующая всех внутренних вертикальных усилий в уровне верха стеновой панели нежилого этажа; Rj1 — предельное сопротивление стыка над панелью нежилого этажа; t1, t2 — толщины стеновых панелей жилого и нежилого этажей соответственно; M1, М2 — предельные моменты, воспринимаемые сечениями перемычки на опоре и в середине пролета, вычисляемые по СНиП 2.03.01—84; l1, l2 — ширины простенков панели нежилого этажа; Rbt — расчетное сопротивление бетона при растяжении; ho — рабочая высота сечения перемычки; qsw — усилие в хомутах на единицу длины перемычки; lnt — длина панели жилого этажа за вычетом ширины проема (lnt = lw1 ‑ l01).

При подборе поперечной арматуры перемычки должно быть соблюдено условие

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (6)

где Rb — расчетное сопротивление бетона при сжатии, jw1 и jb1 — коэффициенты, вычисляемые по СНиП 2.03.01—84.

Прочность нижнего стыка оценивается по формулам:

для левого простенка

N (1 + 0,5l02/l1)/lwi £ 0,8Rj2t2; (7)

для правого простенка

N (1 + 0,5l02/l2)/lwi £ 0,8Rj2t2, (8)

где Rj2 — предельное сопротивление стыка под панелью нежилого этажа.

11. При каркасном решении нижних этажей здания наиболее напряженными участками балок-стенок, которые необходимо проверять расчетом, являются следующие:

перемычки (верхние и нижние) в зоне проемов (для прохода людей); они должны быть проверены на поперечную силу и момент, действующие в этом сечении;

участки главных балок-стенок в местах опирания на них второстепенных балок-стенок необходимо проверять на действие поперечной силы и смятие опорных частей;

опорные участки балок-стенок и колонн рассчитывать на смятие.

12. Прогибы балок-стенок, на которые опираются несущие стены здания при каркасной конструкции нижних этажей, рекомендуется ограничивать исходя из предельных взаимных смещений стеновых панелей, равных 1 см. Предельные прогибы ригелей следует принимать по СНиП 2.03.01—84.

13. Для увеличения несущей способности и жесткости системы возможно объединение балок-стенок и ригелей в единую систему при помощи металлических или железобетонных связей по длине зоны контакта.

Несущая система балки-стенки и ригеля может считаться монолитной, если стыковое соединение воспринимает сдвигающее усилие равное или большее, чем усилие, определяемое по формуле

Т = (М — Мb — Мr)/Н, (9)

где М — максимальный момент внешних сил, действующий на систему; Мb, Мr — предельные моменты, воспринимаемые балкой-стенкой и ригелем; Н — расстояние между нейтральными осями балки-стенки и ригеля.

В случае, если условие (9) не выполняется для систем, в которых жесткость ригеля соизмерима с жесткостью балки-стенки, несущую способность системы можно проверять методом предельного равновесия.

Несущая способность системы должна определяться как наименьшее из значений, соответствующих различным нормальным сечениям, наиболее опасными из которых являются: в середине пролета системы, в зоне проема, в местах изменения высоты, толщины сечения и армирования.

14. Для системы, предельное состояние которой определяется образованием шарнира в зоне максимального момента, предельную нагрузку на систему можно определить по формуле

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (10)

где q — равномерно распределенная нагрузка, проложенная по верху балки-стенки и соответствующая несущей способности системы по рассматриваемому нормальному сечению; Мb, Мr — предельные моменты, воспринимаемые балкой-стенкой и ригелем в рассматриваемом сечении; М¢b — момент в рассматриваемом сечении несущего элемента от нагрузки, приложенной непосредственно к элементу (включая собственный вес балки-стенки);

М¢b = qol1(l ‑ l1)/2; (11)

l — расчетный пролет системы, определяемый по формуле

l = lo + (c1 + c2)/3; (12)

lo — пролет в свету между опорами; с1, с2 —ширина левой и правой площадок опирания; l1 — расстояние до рассматриваемого сечения; Т1, T2 — предельные сдвигающие силы, воспринимаемые стыком на участках l1 и (l — l1).

15. Расчетную длину колонн (при их расчете на вертикальную нагрузку) рекомендуется принимать в зависимости от жесткости узлов между балками-стенками и колонной, жесткости дисков перекрытий и наличия диафрагм жесткости, но не менее высоты первого этажа. В местах опирания ригелей на колонны необходимо предусмотреть металлические закладные детали в колонне и ригеле, воспринимающие часть опорного момента, величиной не менее 30 кН×м.

Пример расчета. Требуется проверить прочность стеновой панели первого нежилого этажа, показанной на рис. 2 (lw = 6 м).

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

Рис. 2. Стеновая панель первого нежилого этажа

Исходные данные:

N = 3400 кН. Бетон класса В20 Rb = 11,5 МПа, Rbt = 0,9 МПа. Арматура класса А-III Rs = 355 МПа, Rsw = 255 МПа. Армирование в опорных и пролетном сечениях перемычки одинаково, площадь сечения продольной арматуры As = 942 мм2. Площадь сечения хомутов Asw = 85 мм2. Шаг хомутов s =150 мм.

Прочность стыков: верхнего Rj1 = 4,5 МПа, нижнего Rj2 = 6,5 МПа.

Толщины панелей: жилого этажа tw1 = 180 мм; нежилого этажа tw2 = 220 мм. Высота перемычки h = 800 мм; ho = 760 мм.

Предельные моменты сечения перемычки: M1 = M2 = M.

Высота сжатой зоны х = (355 × 942)/(11,5 × 220) = 132 мм.

Относительная высота сжатой зоны:

x = 132/760 = 0,174 < xR = 0,625.

Предельный момент поперечного сечения М = 11,5 × 220 × 7602 × 0,174(1 ‑ 0,5 × 174) = 253 × 106 Н×мм. Проверка выполнения неравенства (2):

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

Усилие в хомутах на единицу длины перемычки

qsw = 255 × 85/150 = 144 Н/мм.

Проверка выполнения неравенства (3):

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

Для проверки выполнения неравенства (6) вычисляем

jw1 = l + 5 × 20 × 104/(24 × 103)85/(220 × 150) = 1,108;

тогда jb1 = 1 — 0,01 × 11,5 = 0,885;

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

Проверка прочности нижнего стыка по формуле (8):

3400000/6000 [1 + 0,5(2400/1800)] = 944 < 0,8 × 6,5 × 220 = 1140 Н/мм.

Кроме проверки прочности необходимо проверить ширину раскрытия трещин.

ПРИЛОЖЕНИЕ 4

РЕКОМЕНДАЦИИ ПО ОПРЕДЕЛЕНИЮ ПОДАТЛИВОСТИ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ НЕСУЩИХ КОНСТРУКЦИЙ

1. В настоящем приложении приведены рекомендации по определению коэффициентов податливости соединений сборных бетонных и железобетонных элементов, а также швов бетонирования стен из монолитного бетона, стыков между сборными и монолитными конструкциями жилых зданий и перемычек.

Коэффициентом податливости соединения называется величина, численно равная деформации соединения, вызванной единичной сосредоточенной или распределенной силой.

Коэффициенты податливости соединений при растяжении lt, сдвиге lt, коэффициенты податливости перемычек при перекосе ltin определяют от сосредоточенных сил; коэффициенты податливости при сжатии lс и повороте lj — от распределенных сил.

Для соединений, имеющих несколько характерных стадий работы (например, до образования трещин в соединении и после), коэффициенты податливости (жесткости) следует принимать для каждой стадии дифференцированно. Деформация соединения в этом случае определяется как сумма деформаций от приращений усилий на отдельных этапах.

Основные виды соединений и размерность коэффициентов податливости приведены в табл. 1.

Таблица 1

Коэффициент податливости Обозна­чение Размерность Схема соединения
При растяжении lt мм/Н (см/кгс) расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru
При сжатии lс мм3/Н (см/кгс) расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru
При сдвиге lt мм/H (см/кгс) расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru
При повороте lj 1/МН (1/кгс) расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

При соединении элементов системой связей следует различать следующие случаи их расположения:

последовательное (рис. 1, а, б); параллельное (рис. 1, в, г); смешанное (рис. 1, д, е).

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

Рис. 1. Схема соединений

а, б — последовательные; в, г — параллельные; д, е — смешанные

последовательное (рис. 1, а, б); параллельное (рис. 1, в, а); смешанное (рис. 1, д, е).

Коэффициенты податливости l соединения, состоящего из системы сосредоточенных связей, определяют по формулам:

в случае последовательного расположения связей

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (1)

в случае параллельного расположения связей

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (2)

где n — число связей в соединении; li — коэффициент податливости i-й связи.

В смешанном случае выделяют группы однородно расположенных связей и для каждой из них по формулам (1) или (2) вычисляют коэффициенты податливости, в результате чего систему приводят к случаю последовательного или параллельного расположения связей.

Для определения коэффициента податливости соединения, имеющего сосредоточенные и распределенные связи, последние заменяют эквивалентными по жесткости, сосредоточенными.

2. Коэффициент податливости при растяжении lt соединения сборных элементов в виде сваренных между собой и замоноличенных бетоном арматурных выпусков определяют по формуле

lt = 2aс/ss, (3)

где acrc — ширина раскрытия трещин, нормальных к арматурной связи, вызванных растягивающими напряжениями в связи ss; значение ширины раскрытия трещин рекомендуется определять по указаниям норм проектирования железобетонных конструкций.

Деформации растяжения связей в виде петлевых выпусков диаметра 8 — 12 мм, соединенных между собой скобами из арматурной стали и замоноличенных бетоном класса не ниже В 15, можно определять как для сварных связей, площадь которых соответствует площади поперечного сечения арматуры петлевого выпуска. Диаметр арматуры скобы должен быть при этом не менее диаметра петлевого выпуска.

3. Коэффициент податливости при сжатии соединения элементов определяют в зависимости от конструктивного типа стыка. Для контактного горизонтального стыка, в котором сжимающую нагрузку передают через слой раствора, толщиной не более 30 мм, коэффициент податливости при сжатии lс,соn определяют по формуле

lс,соn = (lт + hcon/Eb,w)А/Асoп, (4)

где lт — коэффициент податливости горизонтального растворного шва при сжатии, определяемый по п. 4 настоящего приложения; hcon —высота контактного участка стыка; Eb,w —модуль деформации бетона стены; А — площадь горизонтального сечения стены в уровне расположения проемов; Асoп — площадь контактного участка стыка, через которую передают сжимающую нагрузку.

Для монолитного горизонтального стыка, в котором сжимающая нагрузка передается через растворный шов в уровне верха перекрытия и слой бетона, коэффициент податливости при сжатии Ас,топ определяют по формуле

lс,топ = (lm + lтоп + hтоп/Eтоп)A/Aтоп, (5)

где hmon — высота (толщина) слоя монолитного бетона в стыке; Eтоп —начальный модуль упругости бетона замоноличивания стыка; Атoп — площадь монолитного участка стыка (за минусом опорных участков перекрытий и других ослаблений сечения стыка); lтоп — коэффициент податливости, вычисляемый по п. 5 настоящего приложения.

Для платформенного горизонтального стыка, в котором сжимающая нагрузка передается через опорные участки плит перекрытий и два растворных шва, уложенные между плитами перекрытий и соединяемыми элементами, коэффициент податливости при сжатии lc,pl определяют по формуле

lc,pl = (l¢m + l¢¢m + hpl/Epl)A/Apl, (6)

где l¢m, l¢¢m — коэффициенты податливости при сжатии соответственно верхнего и нижнего растворных швов; hpl — высота (толщина) опорной части плиты перекрытия; Epl — начальный модуль упругости бетона опорной части плиты перекрытий; Apl —площадь платформенных участков стыка, через которые передается сжимающее усилие; при неодинаковых размерах опорных площадок вверху и внизу плиты перекрытия принимается их среднее значение.

Для платформенно-монолитного стыка, в котором сжимающая нагрузка передается через платформенный участок площадью Apl и монолитный участок площадью Атoп, коэффициент податливости при сжатии A c,pl,mon определяют по формуле

lc,pl,mon = l/(1/lc,pl + l/lc,mon), (7)

где lc,mon, lc,pl — коэффициенты податливости при сжатии, вычисляемые соответственно по формулам (5) и (6).

Для контактно-платформенного стыка, в котором сжимающая нагрузка передается через контактный участок площадью Асoп и платформенный участок площадью Apl, коэффициент податливости при сжатии lс,соп,pl вычисляют по формуле

lс,соп,pl = 1/(1/lс,соn + 1/lc,pl), (8)

где lс,соn, lc,pl — коэффициенты податливости при сжатии, вычисляемые соответственно по формулам (4) и (6).

4. Коэффициент податливости при сжатии горизонтального растворного шва lm определяют в зависимости от способа укладки и прочности раствора и среднего значения сжимающих напряжений в растворном шве sm.

При кратковременном сжатии для раствора прочностью на сжатие 1 МПа и более при толщине шва 10 — 20 мм коэффициент податливости растворного шва lm рекомендуется определять по формулам

при sm £ 1,15R2/3m;

lm = 1,5 × 10-3 R-2/3mtm; (9)

при sm ³ 1,15R2/3m, но не более 2R2/3m;

lm = 5 × 10-3 R-2/3mtm; (10)

где sm — среднее значение сжимающих напряжений в растворном шве, МПа; Rm — кубиковая прочность раствора, МПа; tm — толщина растворного шва, мм; lm — коэффициент податливости растворного шва при кратковременном сжатии, мм3/Н.

Коэффициенты податливости растворных швов при кратковременном сжатии при расчете на нагрузки, действующие в стадии эксплуатации здания, разрешается принимать по табл. 2.

Таблица 2

Среднее значение сжимающих напря­жений в растворном Коэффициент податливости растворного шва толщиной 20 мм при кратковременном сжатии lm (мм3/Н) при кубиковой прочности раствора (МПа)
шве sm, МПа 2,5
При sm £ s1 = 1,15 R2/3m 0,03 0,016 0,01 0,0065 0,004
При s1 < sm = 2R2/3m 0,1 0,054 0,034 0,021 0,013

Для горизонтальных швов бетонирования стен из монолитного бетона классов В7,5 — В15 коэффициент податливости при сжатии принимается равным: для тяжелого бетона 0,01 мм3/Н(1 × 10-4 см3/кгс); для легкого бетона 0,02 мм3/Н (2 × 10-4 см3/кгс).

При сжатии горизонтального растворного шва или шва бетонирования стены из монолитного бетона длительной нагрузкой коэффициент податливости разрешается вычислять по формуле

lm,t = lm(l + jt), (11)

где lm — коэффициент податливости шва при кратковременном сжатии; jt — характеристика ползучести шва, принимается равной 1.

5. Для горизонтального шва на прокладках («сухой» шов) коэффициент податливости при кратковременном сжатии определяют по формуле

lc = tc/(Ec + acsс), (12)

где tс — толщина сжатой прокладки в горизонтальном шве; Еc — начальный модуль упругости прокладки; аc — безразмерный коэффициент; sс — среднее значение нормальных напряжений, сжимающих прокладки.

Величины Еc и аc разрешается определять по табл. 3.

Таблица 3

  Материал прокладки Толщина прокладки, мм Еc, МПа аc
Асбестовый картон марки КАОН
Асбестовый картон марки КАП 2,8 1,8
Асбестовый картон марки КАОН 1,7
Асбодревесно-волокнистая плита (АДВП) 4,8 2,6
Древесно-волокнистая плита мягкая М12 (ДВП) 12,5 1,8 1,8
То же 2,2 1,2
Синтетические сетки из полиэфирной нити, слоями 14,2 3,5
Сетки и сукно бумажной промышленности («СУБ») 3,7 3,1
Лавсановое волокно прессованное 4,4
Рубероид, слоями 3,77 4,2
Пергамин, слоями ¾ 2,5
Паронит, слоями 4,2
Линолеум ПХВ 1,8 8,3
Песок средней крупности в оболочке из стеклоткани

Коэффициент податливости горизонтального шва на прокладках при длительном сжатии lct допускается принимать равным 1,2lc.

6. Коэффициент податливости при сдвиге lt (мм/Н) соединения двух сборных элементов принимается равным сумме коэффициентов податливости для сечений, примыкающих к каждому из соединяемых элементов.

Для бетонного шпоночного соединения из nk однотипных шпонок коэффициент податливости при взаимном сдвиге сборного элемента и бетона замоноличивания стыка определяют по формуле

ltb = lloc(1/Eb + 1/Emon)/(Alocnk), (13)

где lloc — условная высота шпонки, принимаемая при определении ее податливости при сдвиге, равной 250 мм; Aloc — площадь сжатия шпонки, через которую передается в соединении сжимающее усилие, мм2; Eb — модуль деформации бетона сборного элемента, МПа; Етоп — то же, бетона замоноличивания вертикального стыка, МПа.

Для армированного шпоночного соединения до образования в стыке наклонных трещин коэффициент податливости при сдвиге определяют по формуле (13), а после образования наклонных трещин — по формуле

lts = ltb + lts, (14)

где расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (15)

где ds — диаметр арматурных связей между сборными элементами, мм; ns — количество арматурных связей между сборными элементами; Еb — модуль деформации бетона сборного элемента, МПа; Етоп — то же, бетона замоноличивания вертикального стыка, МПа.

Для бесшпоночного соединения сборных элементов с помощью замоноличенных бетоном арматурных связей коэффициент податливости при сдвиге вычисляется по формуле (15).

Опертые по контуру панели перекрытий при платформенном стыке стеновых панелей могут рассматриваться как связи сдвига между стенами перпендикулярного направления. Для такой связи при марке раствора в швах не ниже 100 и деформациях сдвига не более 0,5 мм коэффициент податливости при сдвиге lt,pl = 5 × 10-6 мм/Н (5 × 10-6 см/кгс).

7. Коэффициентом податливости перемычки называется величина, численно равная взаимному линейному смещению опор по вертикали от единичной поперечной силы, вызывающей перекос перемычки.

Диаграмму зависимости «поперечная сила — взаимное линейное смещение опор» перемычки рекомендуется принимать в виде ломаной (рис. 2), точки перелома которой отражают характерные изменения деформированного состояния или расчетной схемы перемычки, вызванные образованием очередной вертикальной либо наклонной трещины.

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

Рис. 2. Диаграмма зависимости «поперечная сила Q — взаимное линейное смещение f опор перемычки» при перекосе

1, ..., m — точки диаграммы, соответствующие образованию вертикальных трещин и наклонной трещины

Коэффициенты податливости перемычек при перекосе рекомендуется определять исходя из следующих предпосылок и допущений:

выделяют три последовательные стадии деформирования перемычек, границами которых являются моменты появления первых нормальных и наклонных трещин;

принимается, что нормальные трещины первоначально образуются в опорных сечениях перемычки (в местах ее заделки в простенки); по мере увеличения усилий, вызывающих перекос перемычки, могут образовываться дополнительные нормальные трещины; шаг нормальных сечений принимается зависящим только от конструктивного решения перемычки;

наклонные трещины возникают после образования всех нормальных трещин; в тавровой перемычке наклонная трещина развивается только в пределах высоты стенки и, дойдя до полки, переходит в продольную (горизонтальную) трещину.

8. Коэффициент податливости перемычки (до образования трещин) определяют по формулам:

для перемычки прямоугольного сечения

llin = (l2red/h2lin + 3)lred/(AlinEb), (16)

для перемычки таврового сечения

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (17)

где lred — приведенный пролет перемычки

lred = l + 0,6hlin, (18)

l — пролет перемычки в свету; hlin — высота сечения перемычки; Eb,. Gb — соответственно, начальный модуль упругости и модуль сдвига бетона перемычки; llin, Alin — соответственно, момент инерции и площадь поперечного сечения перемычки. В случае таврового сечения (составного либо монолитного) за величину Alin принимается площадь сечения ребра перемычки на всю его высоту, включая толщину полки.

9. При использовании расчетной схемы диафрагмы в виде составного стержня с непрерывными продольными связями в формулы (16) и (17) вводят дополнительное слагаемое lw, учитывающее податливость примыкающих к перемычке простенков от изгиба и сдвига в пределах этажа

lw = l1(s1/Het)2 + l2(s2/Het)2, (19)

где l1(2) — коэффициент податливости левого (правого) простенка при местном изгибе и сдвиге в пределах этажа; s1(2) — расстояние от середины пролета перемычки в свету до оси левого (правого) простенка, в который защемлена перемычка; Het — высота этажа;

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (20)

m — коэффициент, принимаемый равным: 1,2 — для прямоугольных в плане простенков; I — для простенков таврового либо двутаврового в плане сечения; I1(2) — момент инерции сечения в плане левого (правого) простенка; A1(2) — площадь сечения в плане левого (правого) простенка. В случае таврового либо двутаврового сечения за величину A1(2) принимают площадь сечения стенки тавра (двутавра) на всю ее высоту, но без учета свесов полок.

С увеличением коэффициента податливости собственно перемычки относительное влияние податливости примыкающих к ней простенков уменьшается. Например, для перемычек, работающих в упругой стадии, при 2 £ l/hlin < 3 податливость простенков можно не учитывать при длине последних 3000 мм и более, а при l/hlin — при длине 2000 мм и более.

10. Коэффициент податливости перемычки в фазе образования вертикальных трещин определяют по формулам:

для перемычки прямоугольного сечения (рис. 3)

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (21)

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

Рис. 3. Деформирование перемычки прямоугольного сечения при перекосе в фазе образования нормальных трещин

а — схема трещинообразования; б — расчетная схема; в — идеализированная расчетная схема

для перемычки таврового сечения (рис. 4)

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

Рис. 4. Деформирование перемычки таврового сечения при перекосе в фазе образования нормальных трещин

а — схема трещинообразования; б — расчетная схема; в ¾ идеализированная расчетная схема

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (22)

где m — количество вертикальных трещин в одной из растянутых опорных зон перемычки округляется до ближайшего целого числа

m = 0,5(l ‑ 2WcrcRbt,ser/Qlin)/lcrc + 1; (23)

lcrc — среднее расстояние между соседними вертикальными трещинами;

lcrc = hAlin/(10pds); (24)

h — коэффициент, учитывающий вид и профиль арматуры, принимаемый для стержневой арматуры периодического профиля, — 0,7; гладкой — 1; ds — номинальный диаметр продольной растянутой арматуры, перемычки, мм; Wcrc — момент сопротивления трещинообразованию для нижней (верхней) растянутой опорной зоны перемычки; Rbt,ser — расчетное сопротивление бетона растяжению для продольных состояний второй группы; Qlin — поперечная сила в перемычке; acrc — ширина раскрытия нормальных трещин в растянутой опорной зоне перемычки от единичной поперечной силы Qlin = 1 Н, мм/Н;

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (25)

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (26)

Здесь величина ds в мм, m — коэффициент армирования, m = As/(bho); b — ширина поперечного сечения прямоугольной перемычки либо ребра тавровой; ho — рабочая высота сечения перемычки; а' — расстояние от равнодействующей усилий в продольной растянутой арматуре до ближайшей грани сечения.

Учет податливости примыкающих простенков производят в соответствии с п. 9.

11. Поперечные силы в перемычке, вызывающие образование соответственно 1-й, m-й вертикальной трещины, определяют по формулам

Qcrc,1 = 2WcrcRbt,ser/l; (27)

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru (28)

12. Коэффициент податливости перемычки в фазе образования наклонных трещин определяют по формулам:

для перемычки прямоугольного сечения с отношением l/hlin £ l,5 (рис. 5)

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

расчет конструкций нижних нежилых этажей бескаркасных жилых зданий - student2.ru

Рис. 5. Деформирование перемычки прямоугольного сечения при l/hlin £ l,5 при перекосе в фазе образования наклонных трещин

a — схема трещинообразования; б — идеализированная расчетная схема

Наши рекомендации