Характеристика монооахаридов и дисахаридов.

Характеристика монооахаридов и дисахаридов.

Углеводы делятся на три большие группы

Во-первых это моносахариды и их производные Во-вторыхолигосахарида В-третьих полисахариду

Моносахариды делятся по характеру карбонильной группына альдозы и кетозы по количеству углеродных атомов на триозы, тетрозы, пентозы, гексозы и тд.

Обычно моносахариды имеют тривиальное название. Например глюкоза, галактоза, фруктоза и др. К этой группе соединений относится различные производные моносахаридоа. Важнейшими из которых несомненно являются фосфорные эфиры. Такие как глюкоза-6-фосфат, глюкоза-1-фосфат, глюкоза-1, 6-бисфосфат, рибоза-5-фосфат и др. Важными являются производные моносахаридов получившие название - уроновые кислоты. Наиболее значимыми являются - глюкуроновые кислоты, галактуроновы (производные галактозы), идуроновые кислоты и др. Кроме того функциональными производнымимоносахаридов являются аминосахара, такие как глюкозамин, галактозамин, так же сульфатированные производные уроновых кислот и ацетилированные производные аминосахаров.

Общее количество мономеров и их производных составляет несколько десятков и превышает количество аминокислот Б белках. Поэтому олигосахаридов может образовываться огромное количество.

ОЛИГОСАХАРИДЫ представляют собой олигомеры мономерными единицами которых являются моносахариды или их производные. Число отдельный мономерных блоков может достигать 1,5 и 2 лесятков, но не более. Все мономерные единицы в олигосахаридах связаны гликозидными связями.Олигосахариды делятся на:

Гомоолигосахариды состоящие из одинаковых мономерных блоков. Мальтоза Гетероолигосахариды в состав которых входят различные мономерные единицы.

Лактоза, сахароза.

В большинстве своем олигосахариды встречаются в организме в качестве структурных компонентов более сложных молекул, а именно гликолипидов и гликопротеидов.

В свободном виде в организме человека могут быть обнаружены: мальтоза - продукт расщепления гликогена, и лактоза, входящая в качестве резервного углевода в молоко кормящих женщин. Основную массу олигосахаридов в организме человека составляют гетероолигосахариды - Гликолипиды и гликопротеиды. Поскольку они имеет чрезвычайно разнообразную структуру, их в организме человека очень большое количество.

Чем объясняется разнообразные структуры олигасахаридов?

Во-первыхразличный количеством мономерных звеньев: их кол-во может быть от 2 до 20. Во вторых разнообразием гликозидных связей между мономерами в олигомерах. Это сзязи альфа и бетта 1,3; 1,4; 1,6 и др. Моносахариды и их производные.

1. Выполняют энергетическую функцию. Окислительное расщепление этих соединений дает организму 55-60% необходимой ему энергии.

2. Промежуточные продукты распада используются в клетках для синтеза других необходимых клетке соединений (пластическая функция). Синтезируются даже соединения других классов. Например из продуктов распада глюкозы синтезируются липиды, заменимые аминокислоты

3. Выполняют структурную функцию, являясь структурными единицами других более сложных углеводов, а так же нуклеотидов. Б составе нуклеотидов входят рибоза и дезоксирибоза. Гетероолигосахариды.

1. Главной функцией является структурная. Они являются структурными компонентами гликолипидов и гликопротеидов.

Функции глипротеидов. а. Регуляторная. Гормоны гипофиза такие как тириотропный гормон, гонототропные гормоны являются гликопротеидами. б. Все рецепторы клеток являются гликопротеидами. В том числе и рецепторы гормонов.

в. Защитная функция. Все антитела являются гликопротеидами.

2. Гетероолигосахаридные блоки, входя в состав гликолилидов и гликопротеидов участвуют В формировании клеточных мембран.

Химия гликогена и крахмала.

Полисахариды- представляют собой полимеры, построенные из моносахаридов или их производных соединенных между собой так же гликозидными связями.

Эти полисахариды могут состоять из одинаковых мономерных звеньев т.е. .являться гомополисахаридами. Количество мономерных единиц в полисахаридах может быть от нескольких десятков до нескольких десятков тысяч. Если в состав полисахаридов входят различные мономерные единицы, то мы имеем дело с гетерополисахаридами или

Единственным гомополисахаридов в организме человека вляется гликоген, состоящий из остатков альфа,D,глюкозы Гликоген. Единственный гомополисахарид.

1. Резервная функция. Причем является резервом не только энергетического, но и пластического материала для клеток. Присутствует во всех без исключения клетках человеческого организма, даже в эмали зуба. Запасы гликогена наиболее значительны в печени где они составляют от 3 до 10% от сырой массы. На втором месте стоит содержание гликогена в мышцах, где его запасы составляют 1% общей массы тканей. Учитывая массу этих органов обшее количество гликогена в печени составляет примерно 200 гр. в мышцах бООгр.

Биологическая роль • важнейшие пищевые источники перевариваемых полисахаридов.Кперевариваемым полисахаридам относятся крахмал и гликоген. Оба соединения — полимеры глюкозы. В состав крахмала входят амилоза и амилопектин. Соотношение амилозы и амило-пектина в крахмалах (рисовом, картофельном и др.) неодинаково, в связи с чем различаются и их свойства.

Несмотря на значительное сходство в строении, биологическая роль гликогена и крахмала различна: крахмал является важнейшим запасным углеводом растений, а гликоген — резервным углеводом животных тканей. Роль глико­гена в жизнедеятельности человека весьма значительна. Избыток углеводов, поступающих с пищей, превращается в гликоген, который откладывается в тканях и образует депо углеводов, из которого, при необходимости организм «черпает» глюкозу, используемую для реализации различных физиологических функций. В связи с этим гликоген играет важную роль в регуляции уровня сахара в крови. Основными органами, в которых откладываются значитель­ные количества гликогена, являются печень и скелетные мышцы. Общее содержание гликогена в организме невелико и составляет около 500 г, из которых 1/3 локализована в печени, а остальные 2/3 — в.скелетных мышцах. Если углеводы с пищей не поступают, то запасы гликогена оказываются полностью исчерпанными через 12— 18 ч. В связи с истощением резервов углеводов резко усиливаются процессы окисления другого важнейшего субстрата окисления — жирных кислот, запасы которых намного превышают запасы углеводов. Наряду с этим заметно уси­ливаются процессы глюконеогенеза, направленные прежде всего на обеспечение глюкозой жизненно важного органа головного мозга, жизнеспособность которого в значительной степени связана с постоянным интенсивным окислением глюкозы. Обеднение печени гликогеном ведет к нарушению функций гепатоцитов, способствуя возникновению жировой инфильтрации, а затем и жировой дистрофии печени. Человек получает с пищей не более 10— 15 г гликогена в сутки; источником его служат печень, мясо и рыба.

Крахмал вчеловеческом организме отсутствует, однако значение в питании весьма велико, поскольку именно крахмал является основным углеводом рациона, в значительной степени обеспечивающим потребности человека в данном виде нутриентов. Источником крахмала служат растительные продукты, прежде всего злаковые и продукты их переработки.

Наибольшее количество крахмала, -содержит хлеб. Содержание, крахмала, в картофеле относительно невелико, но поскольку потребление этого продукта весьма значительно, он наряду с хлебом и хлебобулочными изделиями является важнейшим

61. Наследственные патологии углеводного обмена.Нарушения углеводного обмена достаточно многочисленны н разнообразны. Эти нарушения могут быть

первичными, в таком случае они обусловлены генетическим дефектом, вьгражпюгщгмся в нарушении синтеза того или иного фермента. Фермент может не синтезироваться вообще, может синтезироваться в недостаточном количестве кии он синтезируется с измененными каталитическими и регуляторными свойствами. В любой из этих случаев нарушается процессы углеводного обмена, что проявляется или в виде заболеваний или в виде наследственной предрасположенности к тому или иному заболеванию. Наследственные (или первичные) нарушения обмена углеводов.

К настоящему времени известны десятки наследственных заболеваний причинами которых является нарушение синтеза того или иного фермента углеводного обмена.

Непереносимость лактозы

У людей страдающих непереносимостью лактозы в кишечнике не синтезируется фермент - лактаза. Она обеспечивает в норме расщепление лактозы до глюкозы и галактозы. Дисахариды не способны всасываться поэтому поступившая с пищей лактоза остается в просвете кишечника где с удовольствием используется микрофлорой и разлагается ею, при этом образуется много различных продуктов микробного расшепления лактозы в том числе газообразные продукты: кислоты, альдегиды. Увеличение концентрации последних сопровождается повышением осмотического давления в кишечнике и жидкость из крови уходит в просвет кишечника, в следствии этого развивается понос, рвота, у детей дегидротация, одновременно развивается метеоризм, интоксикация Непереносимость лактозы может быть приобретенная, т.е. у взрослых нарушается синтез лактазы, хотя в детском возрасте таких нарушений не было. Трудности в усвоении лактозы встречается примерно у 20% взрослого населения Европы и примерно у 80% негров и индейцев. Для грудных детей это означает перевод на искусственное вскармливание смесями не содержащими лактозу.

Галактоземия

Значительно опасней для детей раннего возраста нарушение усвоение моносахарида галактозы. У таких людей повышено содержание галактозы в крови хотя этот моносахарид выделяется с мочой (галактотурия). Причиной ! развития заболевания является врожденное нарушение синтеза одного из ферментов обмена галактозы.

При Швейцарском вариантегалактоземии у ребенка нарушен синтез галактокиназы в результате галактоза не усваивается и часть ее восстанавливается в токсичный для клеток б атомный спирт галактитол.

При Африканском вариантегалактоземии у ребенка нарушен синтез фермента гексозо-1-фосфат уридилтрансфераза. В результате в клетках накапливается галактоза и галактоза-1-фосфат. Их накопление оказывает токсичное влияние на клетки. Африканский вариант значительно тяжелее . Считают это связано с накоплением галактоза-1 -фосфата который не может выходить за пределы клеток, а значит выбрасываться с мочой

При галактоземии признаки заболевания появляются уже через несколько дней после начала кормления; появляется тошнота, рвота, обезвоживание, желтушность, поражение почек. Для больных характерно задержка умственного и физического развития, раннее появление каторакты - помутнение хрусталика. Лечение: перевод на диету не содержанию галактозу. Своевременная диагностика галактоэемки позволяет спасти ребенка поскольку замечено, что фермент галактоза-1 -фосфат уркдилтрансфераза к годовалому возрасту начинается синтезироваться или же утилизацка галактозы идет по обходному пути. Гликогенные болезни.

Связаны с наследственными нарушениями метаболических путей синтеза или распада гликогена. Причем может \ наблюдаться избыточное накопление гликогена в клетках - гликогеноз,или отсутствие гликогена в клетках -агликогеноз.

При гликогенозахв результате отсутствия одного из ферментов участвующих в расщеплении гликогена, гликоген накапливается в клетках причем его избыточное накопление сопровождается нарушением функции клеток и тканей. В некоторых случаях дефектом является один из ферментов синтеза гликогена - фермент ветвления.В результате в клетках накапливается гликоген с аномальной структурой который расщепляется медленно и поэтому накапливается.

Гликогенозы могут быть локальные - в этом случае гликоген накапливается в каком-либо одном органе. Могут быть делиризованными - в этом случае во многих органах.

Известны более 10 гликогенозов. Например гликогеноз 5-го типа - болезнь Маркаргля.

Дефектным ферментом у больных является фосфорилаза мышц. Для этих больных характерна мышечная слабость, боли в мышцах при умеренно физической работе. Гликоген накапливается только в миоцитах.

При агликогенозахсодержание гликогена в клетках снижено. Самый характерный признак это выраженное снижение содержания глюкозы в крови натощак. Постоянный недостаток глюкозы для питания мозга обычно приводит к задержки умственного развития. Такие больные погибают в детском возрасте, хотя в принципе частое кормление может значительно ослабить проявление этой болезни.

Белок общий в плазме.

Белок общий в плазме - 65 - 85гр/л

Подразделяются на:

альбумины 40-50гр/л

глобулины 20-30гр/л

Фибриноген 2-4гр/л

анальбуминемия- отсутствие альбуминов в плазме крови. При этой патологии нарушается

транспорт липидов, повышается уровень яолистерола, ЛП и фосфоглицеридов.

Если концентрация альбуминов снижается ниже ЗОгр/л, то обычно развивается отеки.

Причина изменения содержания.

Повышениепоказателя имеет место при дегидратации, шоке, гемоконцентрации, внутривенном введении больших количеств концентрированных «растворов» альбумина. Снижениепоказателя имеет место при недоедании, симндроме малабсорбции, острой и хронической печеночной недостаточности, опухолях, лейкозах.

Гамма-Глобулины. Причина изменениясодержания.

билиарном циррозе, гемохроматоэе, системной красной волчанке, плазмоклеточной миеломе, лимфопро лиферативных заболеваниях, саркоидозе, острых и хронических инфекциях, особенно при лимфогранулеме, обусловленной венерическим заболеванием, тифе, лейшманиозе, шистоматозе, малярии

Снижение показателя имеет место при недостаточном питании, врожденной агаммаглобулинемии,

лимфолейкозе.

Фибриноген плазмы.

Норма 2-6 г/л СИ (0,2-0,6 г* )

Повышениепоказателя имеет место при гломеру лонефрите, нефрозе (иногда), инфекциях Снижениепоказателя имеет место при диссеми-нированном внутрисосудистом свертывании крови (случаи беременности с отслойкой плаценты, эмболии околоплодными водами, стремительные роды), при менингококковом менингите, раке простаты с метастазами, лейкозах, при острой и хронической печеночной недостаточности, врож денной фибрино генопении

Изменение белков при патологии.

Гиперпротеинемии. Увеличенное содержание белков плазмы крови. Возникают при больших потерях воды вследствие ожогов, диарея у детей, рвота при непроходимости верхних отделов кишечника. Резкое увеличение у-глобулинов при миеломной болезни (интенсивно образуются миеломные белки). Содержание белка может достигать 150-160 гр/л, т.е. увеличиваться в 2 раза по сравнению с нормой.

Гипопротеинемия. Снижения содержания общего белка в плазме крови. Развивается за счет снижения содержания альбуминов. Общий белок может снижаться до 3-4- гр/л. Причины. Голодание, тяжелое поражение печени, нефрозы, увеличение проницаемости стенок капилляров.

Диспротеинемии. Нарушение % соотношения отдельных фракций. Часто оно характерно для тех или иных заболеваний.

81. Пути образования аммиака.

В организме человека аммиак образуется, во-первых в результате дезаминирования аминокислот во-вторых в результате инактивации путем окисления биогенных аминов в-третьих в результате распада азотистых оснований некоторых нуклеотидов в-четвертых определенное количество аммиака постоянно образуется в кишечнике в качестве продукта жизнедеятельности микробной микрофлоры (при гниении белков в кишечнике).

Ежесуточно в организме человека образуется от 15 до 17 грамм аммиака. Аммиак представляет собой высокотоксичное соединение. Его концентрация в крови составляет в среднем величину 0,1-0 Д мг/л. При повышении концентрации в крови выше 1 мг/л наблюдаются симптомы аммиачного отравления.

Почему происходит отравление? Эш связано с блокировкой работы цикла КреОса. Дело в том, что аммиак идет на восстановительное аминироваиие а-кетоглютаровон кислоты и этот промежуточный продукт постоянно изымается из цикла Кребса.

Симптомы аммиачного отравления.

1 Трема (дрожание) 2 Повышенная раздражительность 3 Нечленораздельная речь 4 Затуманивание зрения 5 В тяжелых случаях кома 6 Смерть . Основным органом где тгроисходит обезвреживание аммиака является несомненно печень. В ее гепатоцитах до 90% образовавшегося аммиака превращается в мочевину, которая с током крови поступает из печени в почки и затем выводиться с мочой. В норме в сутки с мочой выводиться 20-35 гр мочевины. Небольшая часть образующегося в организме аммиака (примерно 1гр в сутки) выводится почками с мочой в виде аммонийных солей. Аммиак образуется везде.

Аммиак, образующийся в клетках различных органов и тканей в свободном состоянии не может переносится кровью к печени или к почкам в виду его высокой токсичности Он транспортируется в эти органы в связанной форме в виде нескольких соединений, но преимущественно в виде аминов дикарбоновых кислот, а именно глютамина и

аспаргина. Наибольшую роль в системе безопасноготранспорта аммиака играетглютамин. Он образуется в

клетках периферических органов и тканей из аммиака и глутомата в энергозависимой реакции катализируемой .

ферментом глутаминсинтетазой. В виде глутамина аммиак переносится в печень или в почки где расщепляется до

аммиака и глутомата в реакции катализируемой глутаминазой.

Требуется энергия АТФ. Концентрация глутомнна в крови га несколько порядков выше чем других аминокислот.

Вторая реакция

Ферменты мочевннообразованиа в полном объеме имеются то-ько в печени.

Меньшее значение имеет аналогичная система безопасного транспорта с участием аспаргина.

Фермент аспарагинсинтетаза. Энергозавнсямая реакция с участем АТФ (тратится 2 макроргических соединения АТФ

и АДФ) Аммиак связывается в виде аспаргина. Доставляется в печень или в почки где с участием аспарокнназы

происходит выделение свободного аммиака.

Есть еще один путь безопасного транспорта. Аммиак из мышц в печень транспортируется с участием аданина, который образуется в мышечной ткани из аммиака к пнрувата. В гепатоцитах аланин в результате трансдезшинирования вновь расщепляется на аммиак и пнрувзг.

Четвертый. Некоторую роль в транспорте аммиака играет глутаминовая кислота, которая образуется в клетках периферических тканей из аммиака и а-кетоглутаровой кислоты в ходе реакции восстановительного аминирования. Нарушение процессов обезвреживания аммиака.

Приводит к его накоплению в крови. Развивается состояние - гипераммониемия. Токсичность аммиака объясняется его способностью связывать в клетках

а-кетоглуторат за счет обратимости действия фермента глутоматдегидрогеназы. в митохондриях резко падает концентрация а-кетоглутората, что приводит к нарушению работы цикла Кребса и развитию тяжелейшего гипоэнергетического состояния вплоть до летального исхода. Гипераммонеикия может быть:Первичной.В этом случае ее развитие обуславливается врожденной недостаточностью одного из ферментов мочевинообразования. В крови может повышаться содержание или одного аммиака (данный эффект наблюдается пру врожденной недостаточности 2-х первых , ферментов участвующих в мочевинообразовании: карбомоилфосфатсинтетазы или орнитинкарбомоилтрансферазы) или же увеличиваться содержание аммиака вместе с повышением содержания одного из продуктов - неполного синтеза мочевины. Для облегчения состояния таких больных им необходимо уменьшать содержание белка в пищевом рационе. Вторичной.Встречается при тяжелых поражениях печенихотя необходимо отметить, что печень обладает большими резервными возможностями в обезвреживании аммиака. Сохранение всего 1/6 части неповрежденной печеночной ткани может полностью обеспечивать обезвреживание аммиака.

Глюкоза крови и мочи.

Глюкоза - 3,3-5,5 мМ/л.

Изменения в крови и появление в моче.

Повышениепоказателя имеет место при диабете, гипертиреозе, аденокортицизме (гиперфункции коры надпочечников), гиперпитуитаризме, иногда при заболеваниях печени.

Снижение показателя имеет место при гиперин-сулинизме, недостаточности функции надпочечников, гипопитуитаризме при печеночной недостаточности (иногда),.

В моче глюкозав нормальной моче имеется в виде следов и не превышает 0,02 %, что обычными качественными методами не определяется. Появление сахара в моче (глюкозурия) может быть в физиологических условиях обусловлено пищей с больших содержанием углеводов, после лекарств, например диуретин, кофеин, кортикостероиды.

В почках глюкагон увеличивает клубочковую фильтрацию, по-видимому, этим объясняется наблюдаемое после введения глюкагона повышение экскреции ионов натрия, хлора, калия , фосфора и мочевой 44444кислоты.

Белки крови

Содержание Белок общий в плазме - 65 - 85гр/л Подразделяются на:

• альбумины 40-50гр/л

• глобулины 20-ЗОгр/л

• Фибриноген 2-4гр/л

Функция белков.

• транспортная. Соединяясь с рядом веществ (холистерин, билирубин и др

• поддержание рН

• резерв аминокислот

• защитная. Принимают активное участие в свертывании крови.

• поддержание уровня катионов

• поддержание осмотического давления (0,02 атм плазмы крови). Являясь коллоидами, связывают воду и задерживают ее, не позволяя выходить из кровяного русла

Изменение белков при патологии.

Гиперпротеинемии. Увеличенное содержание белков плазмы крови. Возникают при больших потерях воды вследствие ожогов, диарея у детей, рвота при непроходимости верхних отделов кишечника.

Гипопротеинемия. Снижения содержания общего белка в плазме крови. Развивается за счет снижения содержания альбуминов. Причины-. Голодание, тяжелое поражение печени, нефрозы, увеличение проницаемости стенок капилляров.

Диспротеинемии. Нарушение % соотношения отдельных фракций. Часто оно характерно для тех или иных заболеваний.

Причины появления в моче.

Белок. В нормальной, моче имеется незначительное количество белка/ которое не обнаруживается качественными пробами, поэтому считается, что белка в моче нет.При ряде заболеваний в моче появляется белок — протеинурия.1. Внепочечные протеинурии наблюдаются при циститах, пиелитах, простатитах, уретритах и т. д. Количество белка, как правило, не превышает 1%. 2. Почечные протеинурии при функцион, нарушениях — неорганического поражения паренхимы, повышена проницаемость почечного фильтра.

114. Нормальное содержание остаточного азота и мочевины.

Содержание в крови и суточное выведение В крови - 3,3 - 8,3 мМ/л Суточное выведение - 20 - 35 гр.

количество мочевины выводимое с мочой зависитот нескольких факторов.

• Снижение содержания мочевины наблюдается при снижении белка в пище.

• Количество выводимой мочевины будет так же уменьшаться при патологии почек, которое сопровождается задержкой азотистых шлаков в организме.

• Выведение мочевины может снижаться при тяжелой патологии печени как следствие нарушения синтеза мочевины.

Повышениепоказателя имеет место:

а) при почечной недостаточности — остром и хроническом нефрите, остром канальцевом некрозе б) при усилении метаболизма азота на фоне уменьшения почечного кровотока или нарушения функции почек, в) при уменьшении почечного кровотока — при шоке,недостаточности функции надпочечников и иногда при сердечной недостаточности с явлениями застоя.

Снижениепоказателя имеет место при печеночной недостаточности, нефрозе, при кахексии.

Остаточный азот крови.

Остаточный азот - небелковый азот крови, т.е. остающийся в фильтрате после осаждения белков. В крови - 14,3-28,6 мМ/л

Содержание небелкового азота в цельной крови и плазме почти одинаково и составляет в крови 15 — 25 ммоль/л. В состав небелкового азота крови входит главным образом азот конечных продуктов обмена простых и сложных белков ( азот моче­вины (50 % от общего количества небелкового азота), аминокислот (25 %), эрготио-неина (8%)', мочевой кислоты (4%), креатина (5%), креатинина (2,5%), аммиака и индикана (0,5 %)

Небелковый азот крови называют также остаточным азотом, т. е. остающимся в фильтрате после осаждения белков. У здорового человека колебания в содержа­нии небелкового, или остаточного, азота крови незначительны и в основном зави­сят от количества поступающих с пищей белков. При ряде патологических состояний уровень небелкового азота в крови повышается. Это состояние носит название азотемии.Азотемия в зависимости от причин, вызывающих ее, подразделяется на ретенционную и продукционную.

При почечной ретенционной азотемии концентрация остаточного азота в крови увеличивается вследствие ослабления очистительной (экскреторной) функции почек. Резкое повышение содержания остаточного азота при ретенционной почечной азо­темии происходит в основном за счет мочевины. В этих случаях на долю азота мочевины приходится 90 % небелкового азота крови вместо 50 % в норме. Вне-почечная ретенционная азотемия может возникнуть в результате тяжелой недоста­точности кровообращения, снижения артериального давления и уменьшения почеч­ного кровотока. Нередко внепочечная ретенционная азотемия является результатом наличия препятствия оттоку мочи после ее образования в почке.

Продукционная азотемия наблюдается при избыточном поступлении азотсодержащих продуктов в кровь, как следствие усиленного распада тканевых белков при обширных воспалениях, ранениях, ожогах, кахексии и др.

Гемоглобин в крови.

Содержание в крови: Мужчины 135-180гр/л Женщины 120-160гр/л

Биологическая роль Гемоглобин это идеальный дыхательный белок, который обеспечивает

1. транспорт кислорода к тканям,

2. транспорт углекислого газа и

3. гемоглобиновый буфер (основная буферная емкость).

Гипоксия(кислородное голодание) — состояние, возникающее при недостаточном снабжении тканей организма кислородом или нарушении его утилизации в процессе биологического-окисления.

1. Гипоксия вследствие понижения Р02, во вдыхаемом воздухе (экзогенная гипоксия).

2. Гипоксия при патологических процессах, нарушающих снабжение тканей кис­лородом при нормальном содержании его в окружающей среде. Сюда относятся следующие типы: а) дыхательный (легочный); б) сердечно-сосудистый (циркулятор-ный); в) кровяной (гемический); г) тканевый (гистотоксический): д) смешанный.

Гемоглобинурии— обусловлены внутрисосудистым гемолизом эритроцитов.

Первичные — это холодовая, маршевая пароксизмальная.

Вторичные — это переливание несовместимой крови, отравление сульфаниламидами, анилиновыми красками, грибами и т. д.

Гемоглобинурия - обнаружение в моче крови в виде растворенного кровяного пигмента

Гематурия- обнаружение в моче крови в форме красных кровяных клеток.

Почечная гематурия - основной симптом почечного нефрита

Внепочечная гематурия - при воспалительных процессах или травмах мочевых путей.

Характеристика монооахаридов и дисахаридов.

Углеводы делятся на три большие группы

Во-первых это моносахариды и их производные Во-вторыхолигосахарида В-третьих полисахариду

Моносахариды делятся по характеру карбонильной группына альдозы и кетозы по количеству углеродных атомов на триозы, тетрозы, пентозы, гексозы и тд.

Обычно моносахариды имеют тривиальное название. Например глюкоза, галактоза, фруктоза и др. К этой группе соединений относится различные производные моносахаридоа. Важнейшими из которых несомненно являются фосфорные эфиры. Такие как глюкоза-6-фосфат, глюкоза-1-фосфат, глюкоза-1, 6-бисфосфат, рибоза-5-фосфат и др. Важными являются производные моносахаридов получившие название - уроновые кислоты. Наиболее значимыми являются - глюкуроновые кислоты, галактуроновы (производные галактозы), идуроновые кислоты и др. Кроме того функциональными производнымимоносахаридов являются аминосахара, такие как глюкозамин, галактозамин, так же сульфатированные производные уроновых кислот и ацетилированные производные аминосахаров.

Общее количество мономеров и их производных составляет несколько десятков и превышает количество аминокислот Б белках. Поэтому олигосахаридов может образовываться огромное количество.

ОЛИГОСАХАРИДЫ представляют собой олигомеры мономерными единицами которых являются моносахариды или их производные. Число отдельный мономерных блоков может достигать 1,5 и 2 лесятков, но не более. Все мономерные единицы в олигосахаридах связаны гликозидными связями.Олигосахариды делятся на:

Гомоолигосахариды состоящие из одинаковых мономерных блоков. Мальтоза Гетероолигосахариды в состав которых входят различные мономерные единицы.

Лактоза, сахароза.

В большинстве своем олигосахариды встречаются в организме в качестве структурных компонентов более сложных молекул, а именно гликолипидов и гликопротеидов.

В свободном виде в организме человека могут быть обнаружены: мальтоза - продукт расщепления гликогена, и лактоза, входящая в качестве резервного углевода в молоко кормящих женщин. Основную массу олигосахаридов в организме человека составляют гетероолигосахариды - Гликолипиды и гликопротеиды. Поскольку они имеет чрезвычайно разнообразную структуру, их в организме человека очень большое количество.

Наши рекомендации