Классический анализ временных рядов

Анализ временных рядов – это модель прогнозирования, которая используется на практике на протяжении многих лет. В него включается спектральный анализ, классический анализ временных рядов и анализ Фурье. В данной главе рассматривается классический анализ временных рядов в виду его простоты и популярности. К тому же он обеспечивает же ту же точность прогнозирования, как и более сложные методы.

Классический анализ временных рядов базируется на предположении, что статистический ряд можно разложить на четыре составляющие: тренд, сезонные колебания, циклические колебания и случайные колебания.

§ Тренд представляет долгосрочные изменения в продажах, обусловленные такими факторами, как рост населения, расширение рынков, изменения потребительских предпочтений, улучшение качества продукции и сервисного обслуживания и т.п. Виды трендовых кривых представлены на рисунке …

§ Сезонные колебания представляют собой регулярные всплески и падения продаж, которые повторяются с регулярностью в 12 месяцев. Причины, вызывающие эти перепады, включают в себя изменение спроса в зависимости от времени года, рост продаж накануне праздников, а также сезонное предложение товаров (например, овощи, фрукты).

§ Циклические колебания представляют собой долгосрочные (более 1 года) волнообразные изменения спроса.

§ Случайные колебания (остаток) отражает влияние на продажи всех прочих факторов, которые оказались неучтенными в тренде, сезонных и циклических колебаниях.

Если временной ряд достаточно хорошо описывает ся первыми тремя кривыми, то остаток должен представлять собой случайную величину.

классический анализ временных рядов - student2.ru

Рис. 1. Примеры трендов с приложением математических формул

В классическом анализе временных рядов прогнозирование спроса осуществляется путем перемножения четырех значений:

F = T ´ S ´ C ´ R,

где F – прогноз спроса (в товарных или денежных единицах), T – линия тренда, S – индекс сезонных колебаний, C – индекс циклических колебаний, R – индекс случайных колебаний.

На практике в модели оставляют только тренд и сезонные колебания. Это объясняется тем, что в условиях хорошей прогнозируемости спроса индекс случайных колебаний равен единице (R = 1,0). Кроме того, во многих случаях достаточно сложно выявить многолетние циклические колебания, основываясь на анализе случайных колебаний. Поэтому индекс циклических колебаний также полагается единице (C = 1,0). И это допущение не имеет таких уж серьезных последствий, поскольку модель часто приходится корректировать по мере того, как поступают все новые и новые данные. Эффект циклических колебаний просто компенсируется регулярными корректировками модели.

Линия тренда может быть определена несколькими способами, например, методом скользящих средних (то есть практически «на глаз»), или методом суммы квадратов разностей.

Сумма квадратов разностей – это популярная математическая методика, которая позволяет подобрать такой тренд, при котором сумма квадратов разностей между фактическими и модельными значениями временного ряда сводится к минимуму. Методика применима к любым линиям тренда, как линейным, так и нелинейным.

Например, для линейного тренда (T = a + b´t, где t – это время, T – средний уровень спроса) коэффициенты a и b определяются с помощью следующих двух формул:

классический анализ временных рядов - student2.ru

и

классический анализ временных рядов - student2.ru ,

где N – размер временного ряда (количество периодов t во временном ряде); Dt – фактический спрос в период t; классический анализ временных рядов - student2.ru - средний спрос за N временных периодов; классический анализ временных рядов - student2.ru - среднее значение величин t за период N.

Нелинейные тренды имеют более сложную математическую структуру, и потому они здесь не рассматриваются[1].

Сезонная составляющая модели представлена в виде индекса, значение которого меняется в каждом из периодов в пределах горизонта прогнозирования. Этот индекс представляет собой отношение фактического спроса за данный период к среднему спросу. Средний спрос можно рассчитать как среднее арифметическое спроса за определенный период, методом скользящих средних или с помощью тренда. Например, можно воспользоваться следующей формулой:

классический анализ временных рядов - student2.ru ,

где St – сезонный индекс периода t; Tt – величина тренда, рассчитанного по формуле Tt = a + b´t.

В результате прогноз продаж для периода t в будущем рассчитывается по формуле:

классический анализ временных рядов - student2.ru ,

где Ft – прогноз продаж для периода t; L – количество периодов, которые охватывают один сезонный цикл.

Все эти идеи могут быть проиллюстрированы с помощью следующего примера.

Пример. Производитель одежды для молодых женщин должен принять решение о том, когда и в каких объемах ему делать закупки, опираясь на прогноз продаж своей продукции. В году он выделил пять сезонов, значимых для планирования и продвижения своей продукции: лето, межсезонье, осень, новогодние праздники и весна. У него есть статистика продаж примерно за 2,5 года (см. таблицу 1). Прогноз нужно сделать, как минимум, на два сезона вперед, чтобы можно было спланировать закупки и производство. В данном примере прогнозным периодом считаются новогодние праздники, хотя данные о продажа в промежуточный, осенний период пока еще неизвестны.

Первая задача – найти линию тренда. Используя формулу T = a + b´t, рассчитаем коэффициенты:

классический анализ временных рядов - student2.ru

и

классический анализ временных рядов - student2.ru .

Следовательно, линия тренда имеет вид:

классический анализ временных рядов - student2.ru

С помощью этой формулы можно рассчитать модельные значения временного ряда (см. колонку 5 в таблице 1).

Значения сезонного индекса рассчитаны по выше приведенной формуле и представлены в колонке 6. В данном примере значения сезонного индекса посчитаны за все 2,5 года, поскольку сезонные отклонения не сильно различаются из года в год. Если сезонные отклонения из года в год имеют разные значения, то для каждого сезона рассчитывается свой индекс отклонения как среднее значение за несколько лет.

Прогноз продаж в новогодние праздники составляет величину:

классический анализ временных рядов - student2.ru .

Прогноз продаж в осенний период может быть составлен похожим образом.

Таблица 1. Прогноз продаж женской одежды, тыс. $

Сезон Период Продажи Dt´t t2 Тренд (Tt) St Прогноз
 
Лето $9 458 9 458 $12 053 0,78  
Межсезонье $11 542 23 084 $12 539 0,92  
Осень $14 489 43 467 $13 025 1,11  
Праздники $15 754 63 016 $13 512 1,17  
Весна $17 269 86 345 $13 998 1,23  
Лето $11 514 69 084 $14 484 0,79  
Межсезонье $12 623 88 361 $14 970 0,84  
Осень $16 086 128 688 $15 456 1,04  
Праздники $18 098 162 882 $15 942 1,14  
Весна $21 030 210 300 $16 428 1,28  
Лето $12 788 140 668 $16 915 0,76  
Межсезонье $16 072 192 864 $17 401 0,92  
Осень   ?     $17 887*   $18 602**
Праздники   ?     $18 373   $20 945
Итого $176 723 1 218 217      

/* Прогнозное значение. Например, T13 = 11 567,08 + 486,13(13) = 17 887

/** F13 = T13´S13-5 или 18 602 = 17 887 ´ 1,04

Здесь: N = 12; SDt´t = 1 218 217; St2 = 650; `D = (176 723 / 12) = $14 726,92; `t = (78 / 12) = 6,5.

Наши рекомендации