Краткие сведения из истории классической и неклассической логик
Первоначально логика зародилась и развивалась в недрах философии — единой нерасчлененной науки, которая объединяла всю совокупность знаний об объективном мире и о самом человеке и его мышлении. На этом этапе исторического развития логика имела преимущественно онтологический характер, т. е. отождествляла законы мышления с законами бытия.
Вначале законы и формы правильного мышления изучались в рамках ораторского искусства — одного из средств воздействия на умы людей, убеждения их в целесообразности того или иного поведения. Так было в Древней Греции, Древней Индии, Древнем Китае, Древнем Риме, средневековой России. Но в искусстве красноречия логический момент выступает еще как подчиненный, поскольку логические приемы служат не столько цеди достижения истины, сколько цели убеждения аудитории.
Развитие науки логики на протяжении ряда столетий протекало по двум направлениям. Одно из них начиналось с древнегреческой логики (в особенности с логики Аристотеля), на основе которой развивалась логика в Древнем Риме, затем в Византии, Грузии, Армении, арабоязычных странах Ближнего Востока, в Западной Европе и России. Другое направление имело своим истоком индийскую логику, на основе которой развивалась логика в Китае, Тибете, Монголии, Корее, Японии, Индонезии, на Цейлоне1.
Логика в Древней Индии
История логики Индии связана с развитием индийской философии. Древнейший литературный памятник Индии — Веды (II — начало I тысячелетия до н. э.), а наиболее древняя его часть — Ригведа. С целью разъяснения Вед появляются Упанишады, прозаические трактаты брахманов, в которых они развивают или комментируют многие философские мысли, содержащиеся в Ведах.
Индийский ученый Мадхава в своем сочинении «Обзор всех систем» (1350) насчитывает 16 школ древнеиндийской философии. На первом месте стоит материалистическая философская школа чарвака (основатели Брихаспати и его ученик Чарвака). К ней примыкала школа локаята. В основном материалистическими были рационалистические философские системы вайшешика (ее основатель получил прозвище Канада, что значит «пожиратель атомов»), ньяя (основатель школы ньяя — Гаутама) и джайнизм (основатель Вардхамана Махавира).
Были в Древней Индии и идеалистические философские системы, утверждающие первичность духа, сознания, мышления. Наиболее крупные из них: йога, миманса, веданта, буддизм. Среди ведущих философских систем следует назвать также санкхью — систему дуалистическую, исходящую из признания равноправными двух начал — духа и материи, идеального и материального.
Диспуты между представителями различных философских школ способствовали развитию теории познания и логики. Но логика самостоятельно трактуется лишь школой ньяя, хотя еще не систематически, а в форме кратких афоризмов (сутр). Лишь начиная с Дигнаги (VI в.) индийская логика приобретает стройную и систематическую форму. Индийская логика развивалась на протяжении двух тысячелетий, и история ее развития на мировом уровне еще до конца не изучена. Хотя библиография по индийской философии и логике огромна, единства во взглядах на ход ее развития не достигнуто.
В индийской логике много внимания уделяется теории умозаключения, которое в ней отождествляется с доказательством. Существовавший первоначально взгляд, что силлогизм состоит из десяти суждений (членов), меняется. Развитие логики шло по пути сокращения членов силлогизма. Гаутама сократил их до пяти: 1) тезис, 2) основание, 3) пример, 4) применение и 5) вывод. Эта система силлогизма стала господствующей в индийской логике.
Особенностями индийской логики являются следующие:
1) оригинальное учение о пятичленном силлогизме, в котором важна мысль о неразрывной связи дедукции и индукции;
2) суждение не признается самостоятельным актом мысли, а рассматривается как член умозаключения;
3) восприятие не есть нечто непосредственно данное, а заключает в себе акт «суждения — умозаключения». Иными словами, в основе наших восприятий лежит приобретенный нами опыт;
4) различение речи «в себе» (т. е. внутренней речи, являющейся формой процесса мышления, когда человек как бы ведет разговор с самим собой) и речи «для других» (т. е. внешней речи, когда происходит передача мыслей и общение людей в устной или письменной форме). Первая характеризуется более сокращенным способом мышления, чем вторая. Следует отметить, что европейская психология лишь в XX в. приступила к изучению этих видов речи и установлению различий между ними.
В сжатой форме системы индийской логики («старая» ньяя, буддийская логика, «новая» ньяя) изложены в двухтомной «Индийской философии» С. Радхакрипшана.
Одним из наиболее полных систематических изложений основ индийской логики навья-ньяя, сделанным представителем западной логики, является работа видного американского индолога, профессора Гарвардского университета Д. Г. X. Инголлса2.
Навья-ньяя («новый метод», «новая логика») — единственная завершенная система логики, возникшая вне пределов европейской культуры. Основоположником школы считается автор трактата «Таттва-чин-тамани» Гангеша (XII—XIII вв.). В этой школе логика становится самостоятельной наукой, выступает методом и инструментом научного познания. Однако восходящая к древней традиции громоздкая система категорий, несоблюдение различия между абстрактным выводом и конкретным примером вывода говорят о том, что эта логика не лишена недостатков. Во многом их преодолевает поздняя, или радикальная, школа навья-ньяи, основанная Рагхунатхой.
Знакомя с главными понятиями, теорией и методами малоизвестной за пределами Индии логики навья-ньяя, с крупнейшими представителями этой школы за период с XII по XVII в., Инголлс опирается на достижения современной ему символической логики.
Со времени своего возникновения и до двадцатых годов XX в. логика преимущественно развивалась в направлении формализации и каталогизирования правильных способов рассуждений в пределах двух значений истинности. Суждения могли быть либо истинными, либо ложными. Такая логика именовалась классической, так как восходила к древней традиции. Другие ее названия — традиционная или двузначная. Классическая логика — это первая ступень развития формальной логики.
С развитием научного знания логика поднимается на вторую, более высокую ступень развития. Теперь она систематизирует формы мышления, применяя математические методы и специальный аппарат символов. Исследуя содержательное мышление с помощью исчислений, она идет дальше по пути абстрагирования. Эта формальная логика носит название символической, или математической, но является классической, так как по-прежнему оперирует двумя значениями истинности.
В современной математической логике развиваются и неклассические логики, которые оперируют либо бесконечным множеством значений истинности, либо конструктивными (по сравнению с классической логикой) методами доказательства истинности суждений, либо модальными суждениями, либо исключают отрицания, имеющиеся в классической логике.
Д. Инголлс в своей книге отмечает, что формальная логика навья-ньяя отличается высокой степенью абстракции. Ее представители не ограничивались чисто лингвистическим анализом, всегда пытались вскрыть отношения между самими вещами. В некоторых отношениях, считает американский исследователь, навья-ньяя превосходит аристотелевскую логику. Ее создатели, например, имели понятие о конъюнкции, дизъюнкции и их отрицании, знали следствие о классах из законов де Моргана. В школе навья-ньяи кванторы, т. е. логические термины, выраженные словами «все», «некоторые», «любые» и т. п., почти никогда не использовались, так как они выражались с помощью абстракции свойств и путем комбинирования отрицаний. В навья-ньяе анализировались следующие проблемы: отношение «проникновения» (т. е. теория логического следования), проблема отрицательных высказываний, способы образования сложных терминов и др.
Навья-ньяя так и не пришла к использованию символов. Хотя, по мнению Д. Инголлса, незнание представителями этой школы Символов вряд ли справедливо считать недостатком. Ведь никто, за исключением стоиков, не использовал в логике символы вплоть до XIX в. Вместо символов здесь была разработана сложная система клише, благодаря которой удавалось получить множество выражений. Д. Инголлс склонен видеть в логике рассматриваемой формальной логической системы зачатки ряда идей, получивших развитие в математической логике.
Древнеиндийская логика самобытна. Она возникла и развивалась независимо от древнегреческой. С греческой философией и логикой Индия познакомилась лишь в результате похода Александра Македонского (356—323 до н. э.).
Логика в Древней Греции
В Древней Греции логическую форму доказательства в виде цепи дедуктивных умозаключений мы встречаем в элейской школе (уПарменида и Зенона). Гераклит Эфесский выступает с учением о всеобщем движении и изменении. Для древнегреческой философии характерно возникновение и борьба различных философских школ и направлений.
В древнегреческой философии в середине V в. до н. э. появились так называемые софисты (Протатор, Горгий и др.), которые главным предметом своего философского исследования делают не природу (как это было до них), а человека и его деятельность, в том числе этику, риторику, грамматику. Протагор, Горгий и Трасимах впервые в Греции создали теорию риторики. Софисты критиковали и религию, и материалистическую философию. Разрабатывая теорию красноречия, софисты затрагивали и вопросы логики. Протагор написал специальное сочинение «Искусство спорить». Протагор — мастер спорить; он разъезжал по Греции, устраивал диспуты, привлекавшие многочисленных слушателей. По выражению античного автора Диогена Лаэртского, «нынешнее племя спорщиков берет свое начало от него».
Протагор первым стал применять «сократический способ беседы». Этот метод заключался в постановке собеседнику вопросов и показе ошибочности его ответов. Поэтому Протагор стал изучать виды умозаключений в плане логических приемов в речи ораторов. Позднее это сделал Аристотель в его «Топике». Сочинение Протагора «Тяжба о плате» (вы уже познакомились с ним на с. 201) посвящено знаменитому софизму, относящемуся к спору Протагора с его учеником Эватлом.
Против софистов выступил выдающийся материалист Древней Греции Демокрит (460—370 до н. э.), создавший всеобъемлющую философскую систему, включающую учение о бытии, космологию, теорию познания, логику, этику, политику, эстетику и ряд других областей научного знания: математику, физику, биологию, медицину, филологию и др. Демокрит — творец первой системы логики в Древней Греции, написавший специальный трактат «О логике, или Каноны» (в трех книгах; название «Каноны» означает «критерии», «правила»). До нас, к сожалению,
дошли лишь незначительные отрывки. В книге «О логике» Демокрит выступает против софистов, отрицавших объективную истину. Демокрит строит логику на эмпирической основе, поэтому он — один из создателей индуктивной логики. Демокрит рассматривал суждения, выделяя в них субъект и предикат, а также рассматривал определения понятий.
В «Канонах» было изложено учение Демокрита о видах знания. Вопросы логики здесь не отделялись от теории познания. Последователями Демокрита были философы эпикурейской школы. Демокритовско-эпикурейское направление в логике предвосхитило индуктивную логику Ф. Бэкона и противостояло идеалистической сократо-платоновской логике.
Проблемами логики занимались и древнегреческие философы — Сократ (около 469—399 до н. э.) и Платон (428—347 до н. э.). У Сократа на первый план была выдвинута проблема метода, посредством которого можно получить истинное знание. Сократ считал, что любой предмет может быть познан лишь в том случае, если его свести к общему понятию и судить о нем на основе этого понятия. Поэтому он предлагал собеседнику дать определения ряду понятий, таких, например, как «справедливость», «несправедливость», «храбрость», «красота» и т. п.
Сократовский метод использовался так. На вопрос Сократа, что такое несправедливость, отвечающий давал поверхностное, непродуманное определение. Взяв отдельные случаи из повседневной жизни, Сократ показывал, что определение, которое давал отвечающий, оказывается ошибочным или недостаточным и подводил к исправлению его. Новое определение (дефиниция) опять проверялось, дополнялось и т. д. Например, давая определение понятию «несправедливость», в качестве несправедливых люди называли такие действия, как лганьё, обман, делание зла, обращение в рабство и т. п. Но затем выяснялось, что во время войны с врагами эти действия не подпадают под понятие несправедливости. Первоначальное определение ограничивается: действия эти являются несправедливыми только по отношению к друзьям. Но и новое определение недостаточно. Ведь тот, кто обманом заставляет своего больного ребенка принять лекарство или отнимает меч у друга при его попытке к самоубийству, не совершает несправедливого поступка. Следовательно, только тот совершает несправедливость против друзей, кто это делает с намерением им повредить.
Знание Сократ понимает как усмотрение общего (или единого) для целого ряда вещей (или их признаков). Знание есть, таким образом, понятие о предмете, и достигается оно посредством определения понятия. При этом усматривается как сходство или общность предметов, подходящих под данное понятие, так и различия между тем, что подходит под данное понятие, и тем, что подходит под сходное или смежные с ним понятия. УчениеСократа о знании как об определении общих понятий и применявшиеся Сократом индуктивные приемы определения этических понятий сыграли заметную роль в развитии логики.
Учение Сократа о знании развил его ученик Платон в теории «видов» или «идей», создавший систему объективного идеализма, утверждавшую существование духовного первоначала вне и независимо от человеческого сознания. Свою школу Платон основал в Афинах, создав там Академию. Платон общие понятия Сократа, говорящие о сущностях вещей, превратил в абсолютные идеи, которые существуют сами по себе, вне познающего субъекта, и независимо от материального мира. И считал эти идеи первичными, вечными и неизменными, образующими особый потусторонний мир. Материальный мир, по Платону, вторичен, он изменчив, и в нем отражаются вечные, неизменные идеи, которые являются прообразами всех существующих материальных вещей, а вещи эти — только «тени» идей.
В своей деятельности Платон значительное место отводил вопросам теории познания и логики. Платон стремился образовать понятие и затем осуществить деление понятия на его виды, излюбленным логическим приемом которого была дихотомия, т. е. деление понятия А на В и не-В (например, животные делятся на позвоночных и беспозвоночных). Он сформулировал два правила для деления понятий, а теорию суждения развил в диалоге «Софист». Платон отличал отношение различия от отношения противоположности.
В школе Платона много занимались определениями, в частности определениями предметов органической и неорганической природы. Платону принадлежит следующее определение человека: «Человек есть двуногое животное без перьев». Услышав об этом, Диоген, ощипав петуха, принес его в Академию и во время лекции Платона выпустил его со словами: «Вот человек Платона». Платон признал свою ошибку и внес в свое определение поправку: «Человек есть двуногое животное без перьев с широкими ногтями».
Один из величайших ученых и философов древности — Аристотель (384—322 до н. э.). Он родился в городе Стагире, поэтому его называют Стагиритом. Глубокие сочинения Аристотеля посвящены многообразным отраслям современного ему знания: философии, логике, физике, астрономии, биологии, психологии, этике, эстетике, риторике и другим наукам.
В течение 20 лет Аристотель был учеником в школе Платона. Через 12 лет после смерти Платона Аристотель основал в Афинах свою философскую школу (перипатетическую, или Ликей). Общее число написанных им работ приближается к тысяче.
Аристотель впервые дал систематическое изложение логики. Логику Аристотеля называют «традиционной» формальной логикой. Традиционная формальная логика включала и включает
такие разделы, как понятие, суждение, законы (принципы) правильного мышления, умозаключения (дедуктивные, индуктивные, по аналогии), логические основы теории аргументации, гипотеза. Основными работами Аристотеля по логике являются «Первая аналитика» и «Вторая аналитика», в которых дана теория силлогизма, определение и деление понятий, теория доказательства. Логическими сочинениями Аристотеля являются также «Топика», содержащая учение о вероятных «диалектических» доказательствах, «Категории», «Об опровержении софистических аргументов», «Об истолковании». Византийские логики позже объединили все перечисленные работы Аристотеля под общим названием «Органон» (орудие познания)4.
Законы правильного мышления: закон тождества, закон непротиворечия, закон исключенного третьего — Аристотель изложил также в своем главном произведении «Метафизика». Аристотель законы мышления рассматривал первоначально как законы бытия, а логические формы истинного мышления считал отображением реальных отношений.
Для Аристотеля истина есть соответствие мысли с действительностью. Истинным он считал суждение, в котором понятия соединены между собой так, как связаны между собой вещи в природе. А ложным — суждение, которое соединяет то, что разъединено в природе, или разъединяет то, что связано в ней. Аристотель, опираясь на эту концепцию истины, создал свою логику. В «Аналитиках» он довольно основательно разрабатывает модальную логику.
Аристотель видел в логике орудие, или метод, исследования. Основным содержанием аристотелевской логики является теория дедукции. В логике Аристотеля содержатся элементы математической (символической) логики, у него имеются начатки исчисления высказываний.
Дальнейшая разработка логики высказываний, и в том числе теории условных и разделительных умозаключений, была осуществлена логиками мегаро-стоической школы (учение, известное под названием «логики стоиков»). Основатели стои — Зенон (333—261 до н. э.) и Хризипп (282—206 до н. э.).
Логика, по их учению, должна изучать и словесные знаки, и обозначаемые ими мысли. А назначение логики они видели в задаче научить правильно судить о вещах, освободить ум от заблуждений. Стоики делили логику на диалектику и риторику. Таким образом, они выходили за ограниченные рамки формальной логики.
К сожалению, до нас дошли лишь отдельные отрывки из логического учения мегариков и стоиков. Логики этой школы дали анализ логических терминов: отрицания, конъюнкции, дизъюнкции, импликации. В результате дискуссии об импликации у них выявились четыре различных ее понимания. Мегарик Ев-булид открыл первый известный нам из истории семантический парадокс под названием «Лжец».
Логика Древнего Китая3
Под логикой Древнего Китая, по утверждению Пань Шимо, принято прежде всего понимать логику периода Чуньцю и Чжа-ньго (722—221 до н. э.), когда появляется понятие «философская дискуссия» и создается ситуация, известная как «соперничество ста школ». Ученые исследуют теорию имен, понятий, вопросы об искусстве спора (дискуссии). Такими мыслителями являлись: Дэн Си (ок. 545—501 до н. э.), Великий Конфуций (551—501 до н. э.), Хуэй Ши (ок. 370-318 до н. э.), Гун Суньлун (ок. 325—250 до н. э.), Моцзы (ок. 490—403 до н. э.), Сюньцзы (ок. 313—238 до н. э.), Хадьфейцзы (ок. 280—233 до н. э.) и др.6
Пань Шимо так характеризует достижения различных школ того периода: «Усилиями школы имен (минцзя), школы законников (фацзя), конфуцианской школы (жуцзя) и особенно школы поздних моистов (моцзя) была создана более или менее целостная логическая концепция. В Древнем Китае большинство логических теорий было рассеяно по различным трактатам, посвященным вопросам политики, философии, этики и естествознания. Поздние монеты обобщили достижения своих предшественников, взяв при этом за основу учение Моцзы, и создали первый в истории китайской логики энциклопедический трактат «Мобянь» (Рассуждения Моцзы), называемый также «Моцзиы» (трактат Моцзы)»7.
Автор статьи «Логика Древнего Китая» дает концентрированную интересную информацию о тех проблемах, которые разрабатывались в логических теориях периода ранний Цинь: 1) теория имени; 2) теория «цы» (высказываний); 3) теория «шо» (рассуждения) и «бянь» (спора); 4) об основных законах мышления. В статье отмечается ряд особенностей логики Древнего Китая:
а) логические теории концентрировались вокруг основных понятий — «мин» (имени) и «цы» (предложения, высказывания);
б) развитие логики было тесно связано с языком того времени; не обращалось внимания на различие между логической природой «мин» и «цы» и их языковыми свойствами;
в) логика этого периода «обычно исходила из практических требований риторики (способы ведения спора) и познавательного аспекта дискуссии... Логика Древнего Китая не смогла выработать строгих представлений о формах умозаключений и отделить их от теории познания»8, так как придавала чрезмерное значение содержательной стороне мышления и пренебрегала его формой;
г) логика в Древнем Китае находилась под сильным влиянием различных политических доктрин и морально-этических концепций.
В результате обстоятельного анализа Пань Шимо сформулировал следующий вывод: «Хотя логические концепции в Древнем Китае и сформулировались раньше, чем в Древней Греции, но после периода ранний Цинь они практически прекратили свое дальнейшее развитие. Это одна из причин того, что логика в Китае не достигла той зрелости, которой она достигла на Западе»9.
Логика в средние века
Средневековая логика (VI—XV вв.) изучена еще недостаточно. В средние века теоретический поиск в логике развернулся главным образом по проблеме истолкования природы общих понятий. Так называемые реалисты, продолжая идеалистическую линию Платона, считали, что общие понятия существуют реально, вне и независимо от единичных вещей. Номиналисты же, напротив, считали, что реально существуют только единичные предметы, а общие понятия — лишь имена, названия для них. Оба взгляда были неправильными, однако номинализм был ближе к материализму.
Сформулируем основные проблемы, которые разрабатывались в средневековой логике: проблемы модальной логики, анализ выделяющих и исключающих суждений, теория логического следования, теория семантических парадоксов (логики в средние века усиленно занимались их анализом, например парадокса «Лжец» и др., и предлагали разнообразные решения).
Теоретические источники средневековой арабоязычной логики следует искать в логике Аристотеля. Основателем арабоязычной логики считается сирийский математик аль-Фараби (870—950), который прокомментировал весь аристотелевский «Органон». Логика аль-Фараби направлена на анализ научного мышления. Им исследуются и вопросы теории познания, и грамматики. У него, как и у Аристотеля, метод мышления соотносится с реальными отношениями и связями бытия. Аристотель был «духовным наставником» аль-Фараби в области логики.
Аль-Фараби выделяет в логике две ступени: первая охватывает представления и понятия, вторая — теорию суждений, выводов и доказательств.
Сирийская логика послужила посредником между античной и арабоязычной наукой. Историки логики признают влияние логики арабов на развитие европейской логики в средние века.
Таджик Ибн Сина (Авиценна; 980—1037) комментирует Аристотеля и сам пытается развить логику. Авиценне известна зависимость между категорическими и условными суждениями, выражение импликации через дизъюнкцию и отрицание, т. е. формула В учебнике «Логика» Ибн Сина стремился обобщить аристотелевскую силлогистику. Вначале Ибн Сина, П. С. Порецкий, Е. Л. Буницкий и др., внесли существенный вклад в развитие логики на уровне мировых логических концепций.
Трактат по логике впервые появился в России в X в. Это был перевод философской главы из «Диалектики» византийского писателя VII в. Иоанна Дамаскина, представлявшей собой изложение работ Аристотеля и его комментаторов. Первое систематическое учебное пособие по логике, включавшее аристотелевскую логику и отдельные идеи Гоббса, было подготовлено во второй половине XVII в. Тогда же в России начали распространяться отдельные идеи математической логики.
В XVIII в. в России появляются оригинальные логические работы. Первых результатов добивается русский ученый-естествоиспытатель мирового значения Михаил Васильевич Ломоносов (1711—1765). Он вносит существенные изменения в традиционную силлогистику, предлагая свою классификацию умозаключений, отграничивает суждение от грамматического предложения и др. Дмитрий Сергеевич Аничков (1733—1788) в трактате «Заметки по логике» (Annotationes in logicam, metaphysicam et cosmologiam) исследовал модальные суждения, подразделяя их на четыре вида: необходимые, невозможные, возможные и не невозможные, сформулировал систему правил для ведения диспутов.
Философ-материалист Александр Николаевич Радищев (1749—1802) одним из первых в мировой литературе поставил проблему необходимости логического анализа отношений, которого нет ни в логике Аристотеля, ни в логике средневековых схоластов. Он считал, что суждения представляют сравнение двух понятий или в суждениях выражено познание отношений, существующих между вещами. А. Н. Радищев дает следующую классификацию умозаключений11: 1) «рассуждение» (т. е. силлогизм); 2) «уравнение», т. е. умозаключения равенства, основанные на следующей аксиоме: равные и одинаковые вещи состоят в равном либо одинаковом союзе или отношении; 3) «умозаключения по сходству».
Крупнейшими русскими логиками XIX в. в России были Михаил Иванович Каринский (1840—1917) и его ученик Леонид Васильевич Рутковский (1859—1920), основные логические работы которых посвящены классификации умозаключений.
Основной замысел логической теории Каринского можно характеризовать как стремление построить аксиоматике -дедуктивную систему логики, исходя из основного отношения равенства (т. е. «тождества»), и в ней описать дедуктивные и индуктивные умозаключения, не используя элементов строгой формализации. Каринский в этой концепции примыкает к идеям Джевонса, что отметили уже его современники.
Структура умозаключения, по Каринскому, такая. Из двух посылок, имеющих структуру (1) и (2), делается заключение (3).
А находится в отношении R к В: (1)
В тождествен с С. (2)
__________________________________
А находится в отношении R к С. (3)
Приведем примеры.
Москва находится восточнее Парижа.
Париж — столица Франции.
_____________________________________
Москва находится восточнее столицы Франции.
Самара находится западнее озера Байкал.
Озеро Байкал — самое глубокое озеро мира.
_________________________________________
Самара находится западнее самого глубокого озера мира.
Все выводы М. И. Каринский делит на две большие группы: 1) выводы, основанные на «сличении субъектов» и 2) выводы, основанные на «сличении предикатов» (при этом смысл терминов «субъект» и «предикат» не совпадает с соответствующим им традиционным пониманием). Основанием выводов является тождество (или соответственно различие) «субъектов» или «предикатов». В эти две большие группы, по мнению Карийского, можно отнести все виды умозаключений и, кроме них, еще и гипотезу.
Исследуя работы по логике М. И. Каринского, историк логики Н. И. Стяжкин отмечал, что Каринский стремился охватить в своей классификации все виды умозаключений, встречающиеся в практике научного и общечеловеческого мышления. Но поставленная задача оказалась шире, чем принятые Каринским и положенные в основу его теории предпосылки. Она осталась невыполненной.
Л. В. Рутковский — автор работы «Основные типы умозаключений» (1888). Если Каринский строил теорию выводов, используя лишь отношение тождества, и пытался свести к нему все другие отношения, то Рутковский считает возможным признать равноправными с отношением тождества и другие отношения, например отношения сходства, сосуществования и др. Так как существует многообразие отношений, имеется и многообразие видов логических выводов (т. е. видов умозаключений). Умозаключения делятся им на интенсивные (т. е. рассматриваемые в логике содержания) и экстенсивные (рассматриваемые в логике объема).
Рутковский делит все выводы на две основные группы. Первая группа — выводы подлежащих (т. е. выводы по объему) — распадается на три вида: а) традукцию (выводы сходства, тождест-ва, условной зависимости); б) индукцию (полную и неполную); в) дедукцию (гипотетическую и негипотетическую).
Вторая группа выводов — выводы сказуемых (по содержанию) — распадается на выводы «продукции» (разделительный силлогизм, выводы о совместности, современности предметов и др.), «субдукции» (выводы при классификациях и упорядочении предметов и др.), «эдукции» (отнесение предмета к виду его класса, заключения математической вероятности и др.).
Аксиома «продукции» такова: «Из того, что предмет имеет признак В, следует, что этот же предмет имеет и признак С, так как признак В неизменно сосуществует с признаком С»12.
Краткий анализ работ М. И. Каринского и Л. В. Рутковс-кого показывает, что их оригинальные работы по классификации видов умозаключений способствовали прогрессивному развитию традиционной логики в XIX в.
Оригинальными были идеи казанского логика Николая Александровича Васильева (1880—1940). Они возникли в результате изучения проблем традиционной логики, но их значение было столь большим, что оказало влияние на развитие математической логики. Он вслед за другим русским логиком С. О. Шатуновским высказал идею о неуниверсальности закона исключенного третьего. Если Шатуновский пришел к этой идее в результате тщательного изучения особенностей математического доказательства применительно к бесконечным множествам, то Н. А. Васильев пришел к этому выводу в результате изучения частных суждений, рассматриваемых в традиционной логике. Основными работами Н. А. Васильева являются следующие: «О частных суждениях, о треугольнике противоположностей и о законе исключенного четвертого» (1910), «Воображаемая (неаристотелева) логика» (1912) и «Логика и металoгика». Н. А. Васильев подкреплял свои концепции формальной аналогией с неевклидовой геометрией Н. И. Лобачевского. Не все современники Васильева оценили его идеи, хотя некоторые из них считали, что он написал «остроумнейшую работу». Логические идеи Васильева можно рассматривать как некоторые предшествующие мысли, развитые далее в конструктивной и интуиционистской логиках, о неприменимости принципа исключенного третьего для бесконечных множеств. Васильев, кроме того, рассматривает условия, при которых представляется возможным оперировать с противоречивыми высказываниями внутри непротиворечивой логической системы.
В XIX в. появляется математическая логика. Немецкий философ Г.В.Лейбниц (1646—1716) — величайший математик и крупный философ XVII в. — по праву считается ее основоположником. Лейбниц пытался создать универсальный язык, с помощью которого споры между людьми можно было бы разрешать посредством вычисления. При построении такого исчисления Лейбниц исходил из «основного принципа разума», который гласил, что во всех истинных предложениях, общих или частных, с необходимостью или случайно предикат содержится в субъекте. Он хотел всякому понятию дать числовую характеристику и установить такие правила оперирования с этими числами, которые позволили бы не только доказывать вообще все истины, доступные логическому доказательству, но и открывать новые. В надежде, что так люди смогут открывать новые истины, он видел особую заслугу своей всеобщей характеристики. Лейбниц говорил о ней как о чудесном общем языке, имеющем свой словарь (т. е. характеристические числа, отнесенные к понятиям) и свою грамматику (правила оперирования с этими числами). Лейбниц хотел построить арифметизированное логическое исчисление в виде некоторой вычисляющей машины (алгоритма). Однако этого ему сделать не удалось.
В этой концепции Лейбница неприемлемо прежде всего то, что все содержание наших понятий якобы может быть выражено их характеристическими числами. Несостоятельным было представление Лейбница и о том, что человеческое мышление может быть полностью заменено вычисляющей машиной.
Лейбниц полагал, что математику можно свести к логике, а логику считал априорной наукой. Сторонников такого обоснования математики называют логицистами — представителями субъективного идеалистического направления.
Лейбниц является предшественником логицизма в том смысле, что он предложил сведение математики к логике и математизацию логики: построение самой логики как некоторой арифметики или буквенной алгебры. Но Лейбниц был предшественником логицизма и в том, что пытался создать арифметизированное логическое исчисление, о котором мы говорили.
Покажем, как это делал Лейбниц. Возьмем такой категорический силлогизм:
+ 70, -33 +10, -3
Всякий мудрый есть благочестивый.
+ 70, -33 +8, -11
Некоторые мудрые есть богаты.
_____________________________________
+ 8, -11 +10, -3
Некоторые богатые есть благочестивы.
Сверху над понятиями написан выбранный наудачу правильный набор характеристических чисел для терминов посылок (мудрый, благочестивый, богатый). Истинность общеутвердительного суждения «Все S есть Р» (первая посылка) выражается тем, что обе характеристики субъекта делятся на соответствующие характеристики предиката, т. е. 70 (точно, без остатка) делится на 10, а —33 делится на —3, и числа, стоящие на диагоналях, взаимно простые, т. е. + 70 и — 3, так же как — 33 и +10, взаимно простые числа. Истинность частноутвердительного суждения, по Лейбницу, должна выражаться таким правилом: числа, стоящие на диагоналях, должны быть взаимно простыми, т. е. не иметь общих делителей, кроме единицы.
Посылка «Некоторые мудрые — богаты» имеет такие числа:
т. е. на обеих диагоналях стоят взаимно простые числа.
И заключение этому правилу также удовлетворяет, ибо на диагоналях стоят взаимно простые числа:
Истинность общеотрицательного суждения «Ни одно S не есть Р»у Лейбница выражалась тем, что по крайней мере на одной диагонали стоят не взаимно простые числа. Истинность частноотрицательного суждения выражалась тем, что по крайней мере одна из характеристик субъекта не делится на соответствующую характеристику предиката.
Чтобы воспользоваться исчислением Лейбница, люди должны были свое рассуждение облечь в форму силлогизма и посмотреть, правильный он или неправильный. Однако построенная Лейбницем система удовлетворяла этому требованию только в применении к правильным, по Аристотелю, построенным силлогизмам. Автором настоящего пособия доказано, что все 19 правильных, по Аристотелю, модусов силлогизма окажутся правильными и по критерию Лейбница. Но в отношении неправильных модусов категорического силлогизма Аристотеля дело обстоит по-иному. Всегда можно построить такой пример, когда при разных правильных наборах числовых характеристик для посыпок получаются разные оценки заключения: в одних случаях оно оказывается истинным, в других — ложным.
Исчисление Лейбница, таким образом, не выдержало проверки, что, конечно, заметил и сам Лейбниц, перешедший в дальнейшем к построению буквенного исчисления по образцу алгебры. Но тоже неудачно.
Однако в этих замыслах Лейбн