Вопрос 3. Знак и его виды.

Основные характеристики знака.

Знак– это объект, используемый в процессе коммуникации и познания в качестве представителя другого объекта.

Существует три вида знаков:

1) знаки-индексы – представляют причинно-следственную связь между знаком и представленным им объектом: так, дым является знаком огня, а изменение высоты ртутного столба – знаком изменения атмосферного давления;

2) знаки-образы – несут в себе информацию о представленных ими объектах, находясь с ними в отношениях подобия: например, это рисунок, чертеж, план местности;

3) знаки-символы – представляют объект, не будучи связаны с ним причинно или отношением подобия. Они могут быть как наглядными (например, логотип фирмы), так и вербальными (название фирмы). Предметом исследования логики являются вербальные знаки-символы, наиболее важное значение из которых имеют имена.

Для обозначения предметов служат имена.

Имя – это слово или словосочетание, обозначающее какой-либо объект. Имена имеют значение и смысл. Значениеимени – это объект, представленный этим знаком. По значению имена могут быть непустыми, если эти объекты реально существуют или существовали, например Луна, Аристотель, ближайшая к Солнечной системе звезда, или пустыми, если эти объекты не существуют и не существовали, например вечный двигатель, Змей Горыныч, птица Сирин.

Множество объектов, являющихся значениями имени, представляют собой объем имени. Как и значение, объем имени может быть пустым либо непустым.

Независимо от того, какой объем – пустой или непустой – принадлежит имени, оно обладает определенным смыслом. Смысл– это информация об объектах, обозначаемых именем, которая позволяет отличать их от других объектов. В зависимости от того, содержится ли эта информация в самом имени или нет, имена делятся на имеющие собственный смысл и на имена с приданным смыслом. Имена, имеющие собственный смысл, по форме являются описательными: например, «самая высокая гора в Европе» или «нынешний король Испании», их смысл определяется как смыслом имен, их составляющих, так и отношениями между значениями этих имен. Имена с приданным смыслом являются неописательными, поэтому смысл придается им извне, путем постановки в соответствие этим именам других имен. Примеры имен с приданным смыслом: «дом», «буква», «компьютер».

Различают единичные имена, обозначающие один предмет и общие имена, обозначающие предметы некоторого класса. Общие имена могут быть универсальными, все предметы мысленные в данном классе в некотором рассуждении. Мнимые имена чаще всего предметы, которые не существуют в объективной действительными.

Язык логики высказываний.

Для решения различных задач логики было выработано несколько специальных искусственных языков. Одним из наиболее широко применимых является язык логики высказываний.

Логика высказываний - это раздел логики, в котором вопрос об истинности или ложности высказываний рассматривается и решается на основе изучения способа построения высказываний из так называемых элементарных, не разлагаемых на части и не анализируемых, высказываний с помощью логических операций конъюнкции, дизъюнкции, импликации, отрицания и т.д.

Конъюнкция– это логическая операция, отражающая употребление союза «и» в логических выводах;

Дизъюнкция– операция, представляющая употребление союза «или»;

Импликация – операция, которой в естественном языке соответствует связка «если…то».

Как и в естественных языках, в этом языке есть алфавит, а также сложные выражения.

Запишем основные знаки логики высказываний:

Алфавит языка логики высказываний составляют следующие символы:

а) p, q, r, s, ... - пропозициональные переменные, это символы для повествовательных предложений, выражающих суждения. Каждый символ соответствует целому предложению;

б) логические термины:

- отрицание («не», «неверно, что»);

& - конъюнкция («и») (в последнее время для обозначения конъюнкции все чаще используется знак );

- дизъюнкция («или»);

- импликация («если, ...то…»);

- эквиваленция («если и только если…»);

в) (… ) – скобки;

г) ,- запятая.

Выражения в языке логики высказываний являются формулами.

Формулы первого уровня – это элементарные формулы к которым применена только одна логическая связка, например, , ,.

Более сложные формулы строят, присоединяя высказывания при помощи логических связок к уже имеющимся формулам. Процесс построения сложного высказывания из простых регулируется скобками, означающими порядок применения связок, например, .

В случае, когда сложное высказывание содержит много формул, которые надо выделять скобками, используют правило старшинства логических связок: сильнее всех является связка Ø,за ней идут &, , , .

Если формула записана в виде , то q&s было построено раньше, а затем соединено с р младшей связкой .

Запишем примеры:

· «Ромео храбрый и любит Джульетту» s & p;

· «Неверно, что Джульетта некрасивая или Ромео ее не любит» ;

· «Если Джульетта красива, а Ромео храбр, то они любят друг друга» .

Семантика языка КЛВ задается с помощью так называемых «таблиц истинности». Каждая отдельная пропозициональная переменная, замещающая собой простое предложение, может быть истинной или ложной. Это обозначается, соответственно, буквами «и» и «л». Истинность или ложность более сложных формул можно всегда определить, зная истинностное значение содержащихся в них переменных. Для этого существует таблица:

p q Øp p&q pÚq pÚq pÉq pºq
и и л и и л и и
и л л л и и л л
л и и л и и и л
л л и л л л и и

Рассмотрим на примере, как строится таблица истинности для произвольной формулы. Пусть нам дано высказывание: «Если Ромео и Джульетта любят друга, то неверно, что, по крайней мере, один из них не любит другого».

Его переводом на язык КЛВ будет формула:

Алгоритм построения таблицы истинности:

Определить число строк (оно вычисляется по формуле

k = 2n ,

где

k – количество строк;

n – число различных пропозициональных переменных, входящих в формулу).

Задать все комбинации совместной истинности/ложности пропозициональных переменных.[1]

Вычислить (построчно) значение каждой подформулы и формулы в целом (используя данное выше табличное определение пропозициональных связок).

p q p&q      
и и л л и л и и
и л л и л и л и
л и и л л и л и
л л и и л и л и

В этой таблице всего четыре строки, поскольку формула содержит лишь две переменные – p и q. Первые два столбца задают все возможные комбинации совместной истинности и ложности этих переменных. Следующие пять столбцов показывают, каким будет значение каждой подформулы в той или иной строчке. Последний (результирующий) столбец показывает значение всей формулы в целом.

Наши рекомендации