Чисто разделительный силлогизм

Чисто условные или гипотетические силлогизмы

Это умозаключение и посылками и заключением, которого являются условные суждения. Если шарик нагреть, то он увеличиться в объёме. Если шарик увеличиться в объёме, то не пройдет в кольцо. Если шарик нагреть, то он не пройдёт в кольцо. Для того чтобы умозаключение было достоверным нужно ещё одна вещь – условия должны быть достаточными.

Условно-категорический силогизм

Такое умозаключение, одной из посылок которого является условное суждение, а другой посылкой, а также заключением является простое категорическое суждение. Имеет 2 модуса: утверждающий и отрицающий.

Утверждающий (М Поненс) в утверждающем модусе в заключение производится утверждение истинности консиквента условной посылки, на основании утверждения истинны антицидента во 2-ой категорической посылке.

А ⊃ В

А

В

Если воду нагреть до 100 она закипит. Её нагрели. Она кипит.

Неправильный утверждающий модус.

А ⊃ В

В

А

Заключается в том, что модус лишь вероятностный. Если умный, то богатый. Богатый. Умный

Отрицающий (модус толенс).

А ⊃ В

ß-

Ā

Если золото, то блестит. Если не блестит. То не золото.

Неправильный утверждающий модус. Заключение лишь вероятностное.

А ⊃ В

Ā .

ß-

Если дрова березовые, то они дают много тепла. Они не березовые. Они дают мало тепла.

Разделительно-категорический силлогизм

Это умозаключение одной из посылок, которого является разделительное (дизъюнктивное) суждение, другое простое категорическое суждение.

Утверждающе-отрицающий. Во 2-ой посылке этого модуса производится утверждение одного и только одного члена дизъюнкции, а в заключении происходит отрицание всех остальных. ((p ⊽ q ⊽ z) ⋀ p) ⊃ q-,z-. Сдать экзамен можно либо на хорошо, либо отлично, либо удовлетворительно. Студент на экзамене получил хорошо. Значит не получил отлично и удовлетворительно.

Достоверное заключение из посылок следует тогда и только тогда, когда соблюдены следующие правила: разделительная посылка должна быть строго дизъюнкцией.

Отрицающе-утверждающий. Это значит, что во второй (отрицающей посылке) производится отрицание всех членов дизъюнкции, кроме одного и на этом основании в конце утверждается истинность одного и только одного члена дизъюнкции ((p ⋁ q ⋁ z) ⋀ p- ⋀ q-) ⊃ z.

Правила: 1) Разделительная посылка не обязательно должна быть дизъюнкцией, но она должна содержать всевозможные альтернативы. Нарушение этого правила не гарантирует достоверности заключение. Состав простого суждения может быть либо P, либо S. Данная составная часть является S, следовательно она является P

Чисто разделительный силлогизм

Это умозаключение и посылки и заключение которого являются разделительные (дизъюнктивные) суждения.

p ⊽ q

p1 ⊽ p2 ⊽ p3 ⊽

p1 ⊽ p2 ⊽ p3 ⊽ q.

Экзамен можно сдать, либо не сдать

Можно сдать О,Х,У

Можно сдать О,Х,У, либо не сдать

Объясняется наличием строгой дизъюнкции в посылках.

Условно разделительный силлогизм. Дилемма.

Это умозаключение одной из посылок которого является условное суждение, другой посылкой и заключением – разделительное (строгая дизъюнкция). Поедешь на лево – коня, Направо – голову. Либо то, либо другое.

Дилемма – это вид условно-разделительного силлогизма в заключении которого утверждается 2-е альтернативы[2].

4) Индукция (лат. inductio — наведение) — процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не строго через законы логики, а скорее через некоторые фактические, психологические или математические представления.[1]

Объективным основанием индуктивного умозаключения является всеобщая связь явлений в природе.

Различают полную индукцию — метод доказательства, при котором утверждение доказывается для конечного числа частных случаев, исчерпывающих все возможности, и неполную индукцию — наблюдения за отдельными частными случаями наводят на гипотезу, которая, конечно, нуждается в доказательстве. Также для доказательств используется метод математической индукции.

Различают двоякую индукцию:

полную (induction complete) и

неполную (inductio incomplete или per enumerationem simplicem).

[править]

5)Полная индукция

В полной индукции мы заключаем от полного перечисления видов известного рода ко всему роду; очевидно, что при подобном способе умозаключения мы получаем вполне достоверное заключение, которое в то же время в известном отношении расширяет наше познание; этот способ умозаключения не может вызвать никаких сомнений. Отождествив предмет логической группы с предметами частных суждений, мы получим право перенести определение на всю группу.

Схема полной индукции:

Множество А состоит из элементов: А1, А2, А3, …, Аn.

А1 имеет признак В

А2 имеет признак В

Все элементы от А3 до Аn также имеют признак В

Следовательно, все элементы множества А имеют признак В.

[править]

Неполная индукция

Метод обобщения признаков некоторых элементов для всего множества, в который они входят. Неполная индукция не является доказательной с точки зрения формальной логики, может привести к ошибочным заключениям. Вместе с тем, неполная индукция является основным способом получения новых знаний. Доказательная сила неполной индукции ограничена, заключение носит вероятностный характер, требует приведения дополнительного доказательства.

Схема неполной индукции:

Множество А состоит из элементов: А1, А2, А3, …, Аn.

А1 имеет признак В

А2 имеет признак В

Все элементы от А3 до Аk также имеют признак B

Следовательно, вероятно, Аk+1 и остальные элементы множества А имеют признак В.

Пример ошибочного результата:

В Аргентине, Венесуэле и Эквадоре говорят на испанском языке.

Аргентина, Венесуэла и Эквадор — латиноамериканские страны.

Следовательно, в каждой латиноамериканской стране говорят на испанском языке.

Неполная И. по построению напоминает третью фигуру силлогизма, отличаясь от неё, однако, тем, что И. стремится к общим заключениям, в то время как третья фигура дозволяет лишь частные.

Умозаключение по неполной И. (per enumerationem simplicem, ubi non reperitur instantia contradictoria) основывается, по-видимому, на привычке и даёт право лишь на вероятное заключение во всей той части утверждения, которая идёт далее числа случаев уже исследованных. Милль в разъяснении логического права на заключение по неполной И. указал на идею однообразного порядка в природе, в силу которой наша вера в индуктивное заключение должна возрастать, но идея однообразного порядка вещей сама является результатом неполной индукции и, следовательно, основой И. служить не может. В действительности основание неполной И. то же, что и полной, а также третьей фигуры силлогизма, то есть тождество частных суждений о предмете со всей группой предметов. «В неполной И. мы заключаем на основании реального тождества не просто некоторых предметов с некоторыми членами группы, но таких предметов, появление которых перед нашим сознанием зависит от логических особенностей группы и которые являются перед нами с полномочиями представителей группы».

Задача логики состоит в том, чтобы указать границы, за пределами которых индуктивный вывод перестаёт быть правомерным, а также вспомогательные приёмы, которыми пользуется исследователь при образовании эмпирических обобщений и законов. Несомненно, что опыт (в смысле эксперимента) и наблюдение служат могущественными орудиями при исследовании фактов, доставляя материал, благодаря которому исследователь может сделать гипотетическое предположение, долженствующее объяснить факты.

При всём том индуктивные заключения легко ведут к ошибкам, из которых самые обычные проистекают от множественности причин и от смешения временного порядка с причинным. В индуктивном исследовании мы всегда имеем дело со следствиями, к которым должно подыскать причины; находка их называется объяснением явления, но известное следствие может быть вызвано целым рядом различных причин; талантливость индуктивного исследователя в том и заключается, что он постепенно из множества логических возможностей выбирает лишь ту, которая реально возможна. Для человеческого ограниченного познания, конечно, различные причины могут произвести одно и то же явление; но полное адекватное познание в этом явлении умеет усмотреть признаки, указывающие на происхождение его лишь от одной возможной причины. Временное чередование явлений служит всегда указанием на возможную причинную связь, но не всякое чередование явлений, хотя бы и правильно повторяющееся, непременно должно быть понято как причинная связь. Весьма часто мы заключаем post hoc — ergo propter hoc[2], таким путём возникли все суеверия, но здесь же и правильное указание для индуктивного вывода.

6) Методы научной индукции - это методы установления причинных связей между явлениями. Это довольно простые и часто применяемые в повседневной практике методы. Впервые они были описаны английским философом Ф. Бэконом, а затем систематизированы и усовершенствованы другим английским ученым Дж. Миллем. Существует пять методов научной индукции.

1. Метод сходства состоит в том, что если два и более случаев, каждый из которых вызывает исследуемое явление, имеют какое-либо одно - единственное общее обстоятельство, то это общее обстоятельство является, вероятно, причиной искомого явления. Схема:

При обстоятельствах А, В, С происходит явление d.

При обстоятельствах М, F, В происходит явление d.

При обстоятельствах М, В, С происходит явление d.

По-видимому, обстоятельство В является причиной d.

Например, наблюдая случаи дорожно-транспортных происшествий (в разное время суток, разных марок машин, различий в возрасте водителей и т. д.), можно сделать заключение, что большинство из них происходит в результате превышения скорости или алкогольного опьянения водителей.

2. Метод различия - метод, основанный на сравнении двух случаев, в одном из которых исследуемое явление наступает, а в другом - не наступает и при этом первый случай отличается от второго только одним обстоятельством; вероятно, именно это обстоятельство является причиной исследуемого явления. Схема:

При обстоятельствах А, В, С происходит явление d.

При обстоятельствах В, С не происходит явление d.

Вероятно, обстоятельство А является причиной d.

Например, в исследуемых случаях совершения кражи на предприятии установлено, что в тех случаях, когда кражи не было, отсутствовал по разным причинам один из работников охраны предприятия. Можно сделать предположение, что именно этот человек осуществлял кражу.

3. Объединенный метод сходства и различия представляет собой комбинацию первых двух методов, когда путем анализа множества случаев обнаруживают в них как сходное, так и различное. Исследование причинных связей по данному методу осуществляется по следующей схеме:

При обстоятельствах А, В, С происходит явление d.

При обстоятельствах А, Д, Е происходит явление d.

При обстоятельствах В, С не происходит явление d.

При обстоятельствах Д, Е не происходит явление d.

Вероятно, А является причиной d.

Вероятность заключения в таком рассуждении увеличивается, так как соединяются преимущества и метода сходства, и метода различия.

4. Метод сопутствующих изменений используется при анализе сходных случаев, когда изменение одного обстоятельства всякий раз сопровождается изменением другого обстоятельства. На этом основании делается вывод о причинной связи между двумя меняющимися обстоятельствами.

Например, увеличение трения приводит к уменьшению скорости движения тела. Следовательно, причиной изменения скорости движения тела является увеличение трения. Или: чем хуже состояние дороги, тем больше совершается дорожно-транспортных происшествий (при прочих равных условиях). Чем лучше состояние дороги, тем меньше происшествий. По-видимому, состояние дороги может рассматриваться как одна из причин дорожно-транспортных происшествий.

Исследование по данному методу осуществляется по следующей схеме:

При обстоятельствах А, В, С происходит явление d.

При обстоятельствах А1, В, С происходит явление d1.

При обстоятельствах А2, В, С происходит явление d2.

По-видимому, обстоятельство А является причиной d.

Степень вероятности заключения по данному методу зависит от числа рассмотренных случаев, от точности знания о предшествующих обстоятельствах, а также от адекватности изменений предшествующего обстоятельства и исследуемого явления. Нужно также иметь в виду, что для исследователя интерес представляют не любые, а лишь пропорционально нарастающие или убывающие изменения. Недостатком этого метода является то, что он не позволяет выяснить вопрос о том, какова в каждом случае причинная связь. Может быть так, что взаимоизменяющиеся обстоятельства А и явление d - следствие какой-то общей для них причины.

5. Метод остатков связан с установлением причины, вызывающей определенную часть сложного следствия, когда причины остальных частей этого следствия уже установлены. Схема метода:

При обстоятельствах А, В, С происходит сложное явление а, b, с.

Обстоятельство А вызывает часть явления - а.

Обстоятельство В вызывает часть явления - b.

Вероятно, обстоятельство С является причиной явления с.

Эта схема иллюстрирует следующее правило метода остатков: если вычесть из данного явления ту часть его, о которой известно, что она есть следствие определенных предшествующих обстоятельств, то остающаяся часть (остаток) явления будет следствием остальных предшествующих обстоятельств.

При помощи этого метода была открыта планета Нептун.

Особым видом умозаключений неполной индукции является статистическая индукция, или статистическое обобщение.

Статистическое обобщение - это умозаключение неполной индукции, в котором содержится количественная информация о частоте распределения некоторого признака для определенного класса предметов. Этот класс называется популяцией, а любой подкласс из популяции - образцом, выборкой или пробой. Таким образом, статическая индукция - умозаключение от образца к популяции.

Так, статистическая информация о совершении преступлений такого рода, как хулиганство, показывает, что из 100 случаев хулиганских действий до 95 из них совершаются в состоянии алкогольного опьянения. Значит, частота хулиганства, сопровождаемого алкогольным опьянением, определяется как 95:100, т.е. равна 95%.

В статистических обобщениях логический переход от посылок к заключению дает лишь правдоподобное или вероятное заключение

Степень вероятности заключения, полученного с помощью неполной индукции, повышается при:

Ø увеличении числа предметов исследуемого класса;

Ø исследовании как можно более разнообразных видов предметов данного класса;

Ø обобщении предметов по наиболее существенным признакам, характеризующим предметы исследуемого класса;

Ø раскрытии причины появления и изменения предметов исследуемого класса;

Ø сопоставлении полученных заключений с другими положениями науки в данной области знания, законами, дополнении их с дедуктивными умозаключениями.

Индуктивные умозаключения представляют собой логические процедуры, с помощью которых обобщаются результаты опытных исследований. История науки показывает, что многие научные открытия были сделаны на основе индуктивного обобщения эмпирических (опытных) данных. Важное место занимают индуктивные умозаключения в судебно-следственной практике. На их основе формулируются многочисленные обобщения, касающиеся обычных отношений между людьми, мотивов и целей совершения преступлений, способов их совершения, типичных реакций виновников преступлений на действия следственных органов и т. п.

Индуктивные умозаключения в расследовании преступлений имеют свои особенности. Во-первых, результатом обобщения являются не законы, как в научной индукции, а знание сложного единичного события. Во-вторых, обобщаются не только однородные предметы и явления, но и разнородные (например, если совершена кража, то систематизируются способы проникновения преступников в помещение, объект посягательства, количество похищенного и т. д.). Это осложняет индукцию, вводит в нее дополнительные приемы и условия построения умозаключений.

Индукция и дедукция - два взаимосвязанных вида умственных действий, два метода исследования. Общие положения, используемые в дедукции, представляют собой результат предварительного индуктивного обобщения некоторой совокупности фактов, данных научных наблюдений. Например, используемые в дедуктивных умозаключениях большие посылки составляются на основе «индукции» из человеческого опыта или на основе знаний, почерпнутых из специальных наук. Индуктивные умозаключения расширяют наши знания путем распространения известного на неизвестные явления, устанавливают общие правила, законы, причинно-следственные связи, лежат в основе построения гипотез (следственных версий).

Полученные с помощью индукции обобщения играют важную эвристическую роль: они становятся первоначальными предположениями, догадками или гипотетическими объяснениями, которые затем проверяются и уточняются.

Взаимосвязь индукции и дедукции обеспечивает логическую направленность и обоснованность заключений. Если мы вспомним знаменитых сыщиков, описанных в детективной литературе (например, Дюпена, Шерлока Холмса, Пуаро), то обратим внимание на то, что они преуспевали в расследовании преступлений именно благодаря наблюдательности и аналитическим способностям (индукции и дедукции). С удивительной точностью и умением они отыскивали причины, побудившие человека к тому или иному преступлению, и с математической точностью делали соответствующие выводы; из незначительных следов, побочных обстоятельств делали остроумные выводы, восстанавливая картину преступления.

И в обыденной жизни они умели «наблюдать» за всеми, с кем им приходилось встречаться, замечая форму рук, ногтей, наличие мозолей на руках, особенности выражения лица, манеру держаться и т. п. В одежде обращали внимание на платья, манжеты, брюки - пятна и потертости на них наводили сыщиков на остроумные заключения относительно происхождения, образа жизни, привычек, прошлого и многих других обстоятельств жизни данного человека. Забытый преступником предмет, например перчатка, шляпа и даже окурок сигары, давали возможность прийти к умозаключениям, из которых нередко создавалось полное описание личности преступника.

В науке и практических делах объектом исследования нередко выступают единичные, неповторимые по своим индивидуальным характеристикам, события, предметы и явления. При их объяснении и оценке затруднено применение как дедуктивных, так и индуктивных рассуждений. В этом случае прибегают к третьему способу рассуждения - умозаключению по аналогии.

7) Традуктивные умозаключения — это рассуждения, в которых посылки и заключение являются суждениями одинаковой степени общности. Если дедукция — движение мысли от общего к частному (или единичному) случаю, конкретизация общего положения (закона) к отдельному или нескольким случаям, а индукция — движение мысли от единичного или частного к общему, суммирующему все эти случаи, то традукция — это движение мысли от общего к общему, от частного к частному, от единичного к единичному. Традуктивными умозаключениями являются умозаключения отношения и умозаключения по аналогии:

Пять больше трех

Три больше двух

Пять больше двух

Москва севернее Воронежа

Воронеж севернее Новочеркасска

Москва севернее Новочеркасска

В обладает признаками абсд

С обладает признаками абс

С обладает и признаком д

Умозаключения по традукции основываются на двух общих, присущих миру отношений между предметами, явлениями, процессами, свойствах: на тождестве и на сходстве. Эти свойства закреплены в известных аксиомах математики и формальной логики (особенно современной), и в одинаковой степени относятся к рассуждениям о соразмерности по величине, о соразмерности в пространстве, во времени и пр. Это такие свойства как рефлексивность, симметричность, ассимметричность, транзитивность, коммутативность и пр. Социальные, нравственные отношения, чувства — довольно специфичный вид отношений и требуют особого подхода, они не всегда подпадают под особенности названных видов отношений.

Использование традукции требует особого внимания в том случае, когда мы имеем дело с одним и тем же предметом, но по-разному называемому, или в разное время, в разные периоды его существования рассматриваемому. Для предотвращения ошибочных традуктивных заключений в таких случаях, надо тщательно исследовать признаки предмета и отличать те, которые отражают его природу (сущность), от тех, которые вызваны условиями времени и обстоятельств места, в котором оказался данный предмет, т.е. нужно быть хорошим специалистом в той предметной области, относительно которой умозаключают по традукции.

В структурном отношении традуктивные умозаключения также, как и дедуктивные, состоят из двух посылок и вывода. В посылках легко обнаружить элемент, выполняющий роль среднего термина, и два крайних термина, т.е. и этот вид умозаключений состоит из трех элементов. Правда, назвать их субъектом или предикатом вывода невозможно, поэтому будем называть их левым или правым членом отношения, само же отношение, напоминаю, выразимо знаком R. Закономерности отношений уже были названы - это симметричность отношений, ассимметричность, рефлексивность, антирефлексивность, транзитивность, коммутативность и пр.

Различают несколько видов традуктивных умозаключений, определяемых особенностями их структуры: умозаключения простого отношения, умозаключения степени отношения и умозаключения условной зависимости.

Умозаключения простого отношения, в том числе и равенства, — это умозаключения с использованием логических операторов "больше", "меньше", "равно", "правее", "левее", "раньше", "позже" и т.п.

Иван брат Николая

Николай брат Петра

Иван брат Петра.

Умозаключения степени отношения, а они были известны еще стоикам III—II вв. до н. э., используют такие операторы, как "вдвое", "второе" и т.д. больше, "вдвое", "втрое" и т.д. меньше" и пр., и им свойственно умножение степеней в заключении. Например:

В вдвое старше С Дед вдвое старше своего сына

С втрое старше Д Сын втрое сташе своего сына, т.е. внука

В вшестеро старше Д. Дед вшестеро старше внука.

Умозаключениями условной зависимости являются, например, такие:

Если х, то у

но х=z, а у=q

Сл.: Если z, то q.

В аналогии вывод о сходстве предметов в одних признаках основывается на сходстве их в других признаках. Понятно, чти основа для такого вывода довольно шаткая, поскольку речь идет не об абсолютном тождестве и даже не об относительном, а всего лишь о сходстве, и всего лишь в нескольких признаках. Поэтому степень достоверности вывода по аналогии существенно зависит от числа сходных признаков — чем их больше, тем достовернее будет вывод; от существенности этих признаков и степени, силе связи их между собой — чем существеннее будут сходные признаки и чем теснее будет связь между ними, тем достовернее будет вывод по аналогии. Поскольку аналогия, как и индуктивные умозаключения, дает вероятностное знание, то это служит для некоторых основанием рассматривать ее в качестве одного из видов индукции, хотя своеобразие структуры аналогии и ее отличие от индуктивных методов легко просматриваются в следующей схеме:

Предмет Б обладает признаками абсд

Предмет В обладает признаками абс

Предмет В обладает и признаком д.

С другой стороны, столь же неосновательны и предложения рассматривать аналогию как своеобразный вид доказательства. В доказательстве на основе аналогичных случаев рассуждение примерно такое: два предмета (признака, свойства, явления) сопутствуют друг другу во всех предшествующих случаях, поэтому они будут вместе и сейчас. По аналогии же рассуждение несколько иное: два предмета (явления) сходны друг с другом в нескольких известных признаках, следовательно, эти предметы (явления) сходны будут и в признаке, который, известно, присущ только одному из них.

Например:

Планета Земля имеет шарообразную форму, вращается вокруг своей оси, вокруг Солнца, имеет кислород в своей атмосфере, имеет влагу, смену времен года, и на Земле есть разумная жизнь

Планета Марс тоже имеет шарообразную форму, вращается вокруг своей оси, вокруг Солнца, имеет кислород в своей атмосфере, имеет влагу, смену времен года

Сл.: На Марсе есть разумная жизнь.

Различают аналогию предметов, или признаков, и аналогию отношений. Пример о Марсе - аналогия предметов, такой же аналогией будет и несколько иное по направлению рассуждение, т.е. когда, зная об известном артисте, что он высокий, стройный, красивый, средних лет брюнет, заключаем по аналогии и о встреченном на улице высоком, стройном, красивом, средних лет брюнете, что он тоже артист:

Высокий, стройный, красивый, средних лет брюнет - известный артист

Данный (встречный) высокий, стройный, красивый, средних лет брюнет

Наверное, он тоже артист.

Аналогия отношений имеет место тогда, когда мы сопоставляем несколько отношений, чем-то сходных друг с другом. Например, раньше часто говорили, что арифметика так же относится к высшей математике, как формальная логика к диалектической. 2+3 находятся в таком же отношении к 3+2, как 2 x 3 к 3 x 2; или: 6 так же относится к 9, как 10 к 15.

8)

[1] Вайшвилло Е.К., Дегтярев М.Г. Логика: Учеб. Для студ. Высш. Учеб. Заведений. М.: Издательство ВЛАДОС-ПРЕСС, 2001. С. 131.

[2] Минто В. Учебник логики. М.: Юридическая литература, 1996. С. 120.

Наши рекомендации