Выделение и локализация края

Если сигнал, полученный в результате усиления краев, существенно превышает шум, мы можем сделать вывод о том, принадлежит ли определенная точка краю или нет. Такое решение не является абсолютно надежным, так как добавляемый шум в данной точке может оказаться значительным. Все, что мы можем сделать,— это уменьшить вероятность подобного события, выбирая порог таким образом, чтобы число ошибочно отнесенных к краю точек лежало в допустимых пределах.

Если порог слишком высок, слабовыраженные края будут пропущены. Таким образом, существует противоречие между двумя видами ошибок. Увеличивая размер участков, по которым производится усреднение, или (что одно и то же) уменьшая частоту, выше которой подавляются частотные компоненты изображения, мы можем снизить влияние шума и упростить выделение слабовыраженных краев. Однако тут же мы сталкиваемся с противоположной проблемой, вызванной тем, что с увеличением участков в них могут попасть другие края. Тем самым мы видим, что для распознавания коротких краев необходимо, чтобы они были более контрастны.

Изображение с обостренными краями будет иметь большие значения яркости не только в тех пикселах, которые непосредственно расположены на крае, но и в некоторых соседних. Этот эффект особенно ярко проявляется в тех случаях, когда в целях уменьшения шума изображение предварительно сглаживается. Отсюда возникает проблема локализации краев. Если бы не шум, мы могли бы надеяться обнаружить максимальные значения яркости непосредственно на крае. Эти экстремальные значения могли бы затем использоваться для подавления соседних больших значений.

При использовании в качестве оператора квадрата градиента на обработанном изображении каждому краю будет соответствовать гребень с высотой, пропорциональной квадрату перепада яркости. В случае операторов Лапласа или квадратичной вариации возникнут два параллельных гребня по каждую сторону от края. При использовании лапласиана эти гребни будут иметь противоположные знаки и край будет проходить там, где происходит смена знака.

Рано или поздно будет необходимо выяснить физическую причину возникновения края. Что в трехмерной сцене вызвало изменения в функции яркости, обнаруженные детектором края? До настоящего времени на эту проблему обращали мало внимания.

Основную часть последних достижений в задаче выделения краев можно отнести на счет попыток построения оптимальных операторов выделения края и более детального изучения противоречия между выделением и локализацией. Многое, конечно, зависит от выбора критерия оптимальности и базовой модели изображения. Играет роль также ограниченность простейшей модели края как идеальной ступенчатой функции, на которую наложен шум, и упоминались более реалистичные альтернативы.

Одна из проблем, связанных с разработкой методов выделения краев, состоит в том, что предположения, на которых они основаны, часто неприложимы в реальных случаях. Хотя многие поверхности на самом деле обладают постоянной отражательной способностью, неверно, что их изображения будут иметь равномерную яркость. Яркость зависит от многих факторов. И обратно, элементы изображения, соответствующие точкам поверхности различных объектов, могут иметь одинаковые полутоновые уровни. Только в особых случаях изображение можно с пользой рассматривать как совокупность областей постоянной яркости.

Выделение и локализация края - student2.ru

Рис. 2. Фотография некоторой карты.

Выделение и локализация края - student2.ru а) Выделение и локализация края - student2.ru б)
Выделение и локализация края - student2.ru в) Выделение и локализация края - student2.ru г)
Выделение и локализация края - student2.ru д) Выделение и локализация края - student2.ru е)

Рис. 3. Участки краев, выделенные детектором края: а) фильтр Собеля; б) фильтр Превита; в) фильтр Робертса; г) фильтр лапласиан–гауссиан; д) линейный фильтр; е) фильтрация методом Канни.

Одна из трудностей при разработке вычислительных схем для выделения краев заключается в недостаточно ясной формулировке самого задания. Как нам узнать, был ли край “пропущен” или где-то появился “ложный” край? Ответ на этот вопрос зависит от того, как мы собираемся использовать результат.

Для иллюстрации некоторых из изложенных выше мыслей здесь приводятся результаты, полученные реализацией различных операторов выделения краев. На рис. 2 показано изображение некоторой карты. Рис. 3 демонстрирует результат работы различных детекторов края с этим изображением.

В пакете обработки изображений (Image Processing Toolbox) системы MATLAB операции выделения края реализуются с помощью функции edge.

Литература

  1. Criffith A.K., Edge Detection in Simple Scenes Using A Priori Information, IEEE Trans. On Computers, 22, № 5, 551 – 561 (1971).
  2. Хорн Б.К.П. Зрение роботов: Пер. с англ. – М.; Мир, 1989. – 487 с., ил.

Оптимизация палитры изображений

Одной из наиболее удобных форм представления информации, которая возникает при разного рода исследованиях, является изображение. Все изображения можно условно разделить на четыре типа - бинарные, полутоновые, палитровые и полноцветные. Бинарные и полутоновые представляют собой двумерные массивы чисел, которые являются эквивалентами яркостей. Полноцветные изображения хранятся в виде трехмерных массивов. Для доступа к значениям интенсивностей, составляющих цвета пикселя, необходимо указать координаты (k, l) и номер составляющей: 1 - для R, 2 - для G и 3 - для B. Палитровые изображения хранятся в виде двумерных массивов, в трех столбцах которых размещены значения интенсивностей R, G, B.

Каждый графический файл состоит из двух основных частей - оглавления и непосредственно данных. В первой части содержится информация о структуре графического файла. Рассмотрим палитровые изображения как наиболее распространенные. В большинстве случаев после оглавления в файле палитрового изображения помещена палитра цветов. Для реальных изображений эта палитра имеет большие размеры, что существенно влияет на объем графического файла.

При передаче информации по каналам связи, а также при решении некоторых практических задач важным является минимизация размера файла. Этого можно достичь за счет оптимизации палитры изображения. Искажение визуального качества при этом должно быть минимально.

К решению этой актуальной задачи можно подходить по-разному. Известные подходы, которые базируются на так называемой "безопасной" палитре или выборе наиболее встречающихся цветов, не дают хорошего результата. Это объясняется тем, что при преобразованиях с фиксированной палитрой, не проводится анализ цветности обрабатываемого изображения. Поэтому для изображений, которые содержат лишь оттенки одного цвета, метод с использованием "безопасной" палитры неэффективен. Метод, основанный на использовании наиболее встречающихся цветов, хорошо обрабатывает изображения, которые содержат много оттенков, и неэффективен для обработки изображений с большим количеством основных цветов.

Это привело к необходимости создания в некоторой степени универсального метода преобразования палитры цветных изображений. Анализ известных подходов подтолкнул к использованию кластерного анализа гистограммы изображений. Рассмотрим методы кластерного анализа более детально.

Каждая независимая измеряемая величина называется признаком. Основная парадигма заключается в том, чтобы выбрать п измеряемых величин объекта, подлежащего классификации, и затем рассмотреть результат как точку в n-мерном пространстве признаков. Вектор признаков образуется как совокупность этих величин. Было исследовано много различных алгоритмов для разбиения пространства признаков на части, используемые для классификации. Считается, что неизвестный объект принадлежит классу, соответствующему той части, в которую попал вектор признаков.

Что все это значит для машинного видения? После того как изображение разбито на сегменты, измерения можно производить в каждой области изображения. Затем можно попытаться идентифицировать объект, породивший каждую область, с помощью классификации, основанной на этих измерениях. Примерами простых характеристик являются площадь, периметр, минимальный и максимальный моменты инерции области бинарного изображения.

Для этих методов необходимо получение достаточной информации, обеспечивающей оптимальное разбиение n-мерного пространства характеристик. Если мы знаем истинные распределения вероятностей, границы разбиения можно выбрать так, чтобы минимизировать некоторый критерий допустимых ошибок. Однако, обычно эти распределения оцениваются по конечному числу примеров, взятых из каждого класса, и часто можно работать непосредственно с этой информацией, а не с оценкой плотности вероятности.

Основным предположением здесь является то, что точки, принадлежащие одному и тому же классу, образуют кластер, а точки, принадлежащие различным классам, разделены. Иногда эти предположения не подтверждаются: методы классификации образов не годятся, например, для различения рациональных и иррациональных чисел или черных и белых квадратов на шахматной доске.

Серьезной проблемой в применении машинного видения является то, что изображение представляет собой двумерную проекцию трехмерного реального тела. Трудно решить задачу в полном объеме, пользуясь лишь простыми характеристиками, основанными непосредственно на изображении и не зависящими от пространственного положения объекта, освещения и расстояния до объекта. Методы распознавания образов будут хорошо работать лишь тогда, когда они основываются на характеристиках, которые не зависят от конкретных методов получения изображения, т.е. когда мы можем оценить истинные свойства объекта, например, отражательную способность и форму. Но для этого, естественно, задача распознавания должна быть уже в основном решена.

Наши рекомендации