БК.Физические основы метода.Область применения БК

Методом бокового каротажа исследуется кажущееся удельное сопротивление пластов. Этот метод входит в группу модификаций электрического каротажа, в которых используются зонды с управляемым электрическим полем. Боковой каротаж так же называют каротажем с зондами с фокусировкой тока.

Боковой каротаж проводят многоэлектродными (семь, девять электродов) и трёх электродными зондами. Применяют многоэлектродные зонды с электродами небольшого размера (точечными) и с кольцевыми электродами, установленными на изолированной трубе.

Трехэлектродный зонд бокового каротажа (см. рис. 1, а) представляет собой длинный цилиндрический электрод, разделенный изоляционными прослойками на три части: небольшой по длине центральный (основной) электрод А0 и два расположенных симметрично по отношению к нему и соединенных между собой накоротко экранных электрода A1 и А2. Через основной и экранные электроды пропускается ток одной полярности и обеспечивается равенство их потенциалов. Это может быть достигнуто одним из следующих способов:

1. Сила тока через экранные электроды автоматически регулируется так, чтобы разность потенциалов основного и экранных электродов была равна нулю.

2. Основной электрод накоротко соединяется с экранными электродами.

БК.Физические основы метода.Область применения БК - student2.ru

 
 
Рис.1.Схемы зондов бокового каротажа:а—трехэлектродного(БК-3); б —семиэлектродного (БК-7); в — девятиэлектродного (псевдобокового) каротажа (БКМ).  

Практически в последнем случае основной электрод соединяют с экранным через небольшой резистор r, который используется для измерения силы тока через основной электрод. Величина резистора r берется такой, чтобы вносимая в результате введения этого резистора погрешность не вызывала заметного искажения результатов.

Когда достигается равенство потенциалов, в результате влияния поля экранирующих электродов ток, выходящий из основного электрода, на значительном расстоянии распространяется слоем, перпендикулярным к оси скважины, с толщиной, приблизительно равной длине основного электрода. Вследствие этого влияние скважины и вмещающих пород сказывается на результатах измерений значительно меньше, чем при обычных зондах.

БК.Физические основы метода.Область применения БК - student2.ru

Рис.2.Распределение токовых линий зондов БК в однородной среде: а — трехэлектродного, б — семиэлектродного, в —- многоэлектродного, I0 — токовый слой центрального электрода A0.  

Для определения кажущегося удельного сопротивления необходимо знать потенциал основного электрода — разность потенциалов ∆Uкс между основным токовым, который является одновременно измерительным М, и удаленным на достаточно большое расстояние от зонда электродом N, находящегося в скважине. Фактически измеряют потенциал экранного электрода; результат получается тот же самый, так как потенциал экранных и основного электродов одинаков.

БК.Физические основы метода.Область применения БК - student2.ru

Рис. 3. Схемы измерения методом БК с применением трехэлектродного зонда с автокомпенсатором (а) и с шунтирующим сопротивлением R0 (б). I0, Iэ—токи, питающие соответственно центральный электрод А0 и экранные электроды A1 и A2; РУ — регулирующее устройство силы тока, протекающего через экранные электроды

Кажущееся удельное сопротивление для трехэлектродного зонда подсчитывается по формуле (1):

рк = K∆Uкс/I0 (1), где I0 — сила тока через основной электрод A0;

К — коэффициент зонда; он берется таким, чтобы в однородной среде кажущееся удельное сопротивление получалось равным удельному.

Если сила тока питания основного электрода I0 поддерживается постоянной, то, записывая изменение ∆Uкс, получают кривую сопротивления.

Характерными размерами трёхэлектродного зонда являются длина зонда L – расстояние между серединами интервалов, изолирующих центральный электрод от экранных электродов, общий размер зонда Lобщ – расстояние между внешними концами электродов А1 и А2, диаметр зонда dз. За точку записи кривой условно принимается середина центрального электрода А0.

Электроды трехэлектродного зонда в отличие от электродов обычных зондов представляют собой объёмные тела, поэтому расчёты электрического поля такого зонда более сложные, чем в случае точечных электродов. Общая длина трёхэлектродного зонда выбирается примерно 3,2 м; минимальная мощность пласта, которая выделяется этим зондом – 0,5 м, при длине центрального электрода 0,15 м. Диаметр зонда исходя из условия проходимости прибора по стволу скважины принят равным 70 мм.

Кривые трёхэлектродного зонда обладают высокой расчленяющей способностью, по ним достаточно уверенно выделяют пласты мощностью 0,5 -1,0 м. Радиус исследования трёэлектродного фокусированного зонда сравнительно небольшой и составляет 1-2 м. Недостаток трёхэлектродного зонда: невозможно увеличить радиус исследования путём изменения его размеров.

Зонд семиэлектродного бокового каротажа (рис. 1 и 2, б) состоит из центрального электрода А0 и трех пар симметрично расположенных относительно него электродов M1 и М2, N1 и N2, A1 и A2.Симметричные одноименные электроды попарно соединены между собой. Через электрод А0пропускают ток I0, сохраняемый постоянным по величине в процессе записи кривой. Электроды А1 и А2являются экранными; через них пропускается ток, сила которого автоматически регулируется так, чтобы напряжение между электродами M1 и N1 или, что все равно (так как соответствующие электроды закорочены), между электродами М2 и N2, было равно нулю.

Так как выполняется условие, что напряжение между измерительными электродами М1 и N1 (а также между М2 и N2) равно нулю, то сила тока на участке скважины M1N1 и M2N2 также равна нулю. Получается, что будто бы скважина и прилегающие к ней участки пласта над электродом А0 и под ним были замещены изолятором (рис. 2, б). Ток, выходящий из электрода А0, распространяется на значительное расстояние в радиальном направлении (от скважины) слоем, перпендикулярным к оси скважины (горизонтально). Измеряемое напряжение ∆Uкс представляет собой падение потенциала по указанному слою от скважины до удаленной точки. Естественно, что на это падение потенциала скважина и вмещающие породы оказывают небольшое влияние. Это позволяет во многих случаях получить кажущееся удельное сопротивление, значительно более близкое к удельному, чем при обычных зондах; в частности, обеспечивается лучшая оценка удельного сопротивления тонких пластов.

Разность потенциалов измеряют между измерительными электродами зонда и достаточно далеко удаленным от зонда электродом N. В результате измерений получают кажущееся удельное сопротивление рк, оно также определяется по формуле (1)

рк = K∆Uкс/I0

где I0 — сила тока через основной электрод A0; К — коэффициент зонда; он берется таким, чтобы в однородной среде кажущееся удельное сопротивление получалось равным удельному.

Результат измерений зондом бокового каротажа относят к точке А0; за длину L зонда принимают расстояние между точками О1 и О2 (серединами интервалов M1N1 и M2N2). За точку записи условно принимают электрод А0. Характерными для зонда являются также расстояние Loбщ=A1A2, называемое общим размером зонда, и параметр фокусировки зонда q=(Loб-L)/L. Параметр фокусировки влияет на форму слоя токовых линий, выходящих из основного электрода. В случае однородной среды с увеличением q, т.е. с приближением электродов к основному, слой выходящих из электрода А0 токовых линий по мере удаления от оси скважины сжимается, а при уменьшении величины q – расширяется.

Влияние скважины и зоны проникновения на рк можно исключить в том случае, если общий размер семиэлектродного зонда значительно больше диаметра скважины (Lобщ>>dc). Однако увеличение длины зонда ухудшает выделение тонких пластов. Обычно выбирается зонд общим размером 2-3 м. Для неоднородной среды в зависимости от скважинных условий измерения выбирается зонд с Lобщ=2 м и q=1,5 либо с Lобщ=3 м и q=4. На практике используются два зонда - с большим радиусом исследования (A11,1N10,2М10,2А00,2хМ20,2N21,1А2) и с малым (А10,5N10,2М10,3А00,3М20,2N20,5А2).

Преимущество зонда бокового каротажа перед обычными зондами особенно наглядно иллюстрируется на рис. 3, где показано распределение токовых линий, выходящих из расположенного в середине тонкого пласта большого сопротивления токового электрода, в случае обычного зонда (а), когда экранные электроды отсутствуют, и при зонде бокового каротажа (б), когда имеются экранные электроды, сила тока через которые регулируется так, как указано выше. Как видно, при обычном зонде токовые линии в пределах пласта в основном идут вверх и вниз по скважине, пока не выйдут во вмещающие породы низкого сопротивления; поэтому кажущееся удельное сопротивление много меньше удельного. Наоборот, при боковом каротаже токовые линии распространяются по пласту так, что полученное сопротивление, пропорциональное падению потенциала между электродом А0 и бесконечностью по пласту, будет близко к удельному сопротивлению пласта.

БК.Физические основы метода.Область применения БК - student2.ru

 
 
Рис. 3. Распределение токовых линий, выходящих из расположенного против середины пласта большого сопротивления электрода А обычного зонда (а) и электрода А0 зонда бокового каротажа (б).  

Для увеличения радиуса исследования в методе БК применяются девятиэлектродные фокусированные зонды, в которых между основными экранными А1 и А2 и измерительными N1 и N2электродами установлены дополнительные экранные электроды В1 и В2.

Фокусировка тока центрального электрода в этом зонде может производиться двумя способами:

1) через электроды В1 и В2 пропускают ток обратной полярности и постоянной силы, в несколько десятков раз превышающей силу тока, проходящего через электрод А0; ток, протекающий через электроды А1 и А2, регулируют так, чтобы разность потенциалов между измерительными электродами М1 и N1 (M2 и N2) равнялась нулю;

2) поддерживают постоянной амплитуду тока, проходящего через электроды А1 и А2, а равенство нулю разности потенциалов между M1 и N1(M2 и N2) обеспечивается регулировкой силы и направления тока, протекающего через электроды В1 и В2.

При первом способе фокусировки тока I0 радиус исследования девятиэлектродного зонда заметно увеличивается по сравнению с семиэлектродным зондом в пластах большой мощности, при втором способе фокусировки девятиэлектродный зонд приобретает более благоприятные характеристики и радиус его исследования в пластах большой мощности еще больше возрастает. Этот зонд предложен венгерскими геофизиками и назван нормализованным. Он позволяет регистрировать величину рк, близкую к истинному удельному сопротивлению пород до очень больших значений.

Существует также девятиэлектродный так называемый псевдоэкранный зонд, который отличается от семиэлектродного фокусированного зонда тем, что обратный токовый электрод В в нем приближен к зонду и расположен в виде раздвоенных электродов В1 и В2 с внешней стороны электродов А1 и А2, симметрично относительно центрального электрода А0 (см. рис. 1 и 2, в). Через электроды А0, А1 и А2замыкается токовая цепь. В связи с малым расстоянием от обратных токовых электродов до зонда создается такое распределение токовых линий центрального электрода, при котором значительная часть потенциала падает в непосредственной близости от скважины. В связи с этим радиус исследований девятиэлектродного псевдоэкранного зонда значительно меньше, чем семиэлектродного, и с его помощью можно изучать удельное сопротивление только ближней к скважине зоны пласта. По принципу работы этот зонд аналогичен семиэлектродному и к нему применимы те же теоретические расчеты. Условием фокусировки тока центрального электрода является также равенство потенциалов на электродах M1 и N1 (M2 и N2). Характерные размеры зонда: Lобщ(А) — расстояние А1А2, Lобщ(В) — расстояние В1В2, L — расстояние О1О2. Параметр фокусировки q=(Lобщ(А)—L)/L.

Область применения БК.

Боковой каротаж наиболее выгоден для исследования разрезов скважин, сложенных породами высокого сопротивления, при сильной минерализации бурового раствора. С помощью БК в этих случаях можно лучше расчленять разрез и получить более точные данные об удельном сопротивлении пород, чем это удается сделать при проведении КС к побыми обычными зондами.

Пример диаграммы бокового каротажа, полученной с аппаратурой АБК-ЗМ с трехэлектродным зондом, в сравнении с кривой КС, снятой с последовательным градиент-зондом длиной 2,25 м, приведен на рис. 21. Из рисунка видно, что благодаря фокусировке тока пласты высокого сопротивления по диаграммам БК выделяются четче, а кажущиеся сопротивления в них выше, чем при измерениях с обычным градиент-зондом.

Боковой каротаж перспективен для расчленения разрезов скважин на угольных месторождениях и выделения пластов ка­менных углей высокого сопротивления, однако зонды БК в этом случае должны быть небольшой длины, чтобы не пропус­тить пласт, если его мощность составляет около 0,1 м.

Наши рекомендации