Показатели точности и формы представления результатов измерений

Подводя итоги рассмотрению основных положений теории погрешностей, остановимся на тех стандартных правилах определения показателей точности измерений и представления результатов измерений, которые регламентируются ГОСТ 8.011—72. В качестве показателей точности установлены:

интервалы, в которых с заданной вероятностью находится погрешность результата измерения или ее систематическая составляющая;

числовые характеристики систематической и случайной составляющих погрешности результата измерения;

функции распределения систематической и случайной составляющих погрешности результата измерения.

Основным способом выражения точности измерения является задание интервала, в котором с установленной вероятностью находится суммарная погрешность Δ. В этом случае принимается следующая форма представления результата измерения:

A; Δ от Δн до ΔВ ; P

где А — результат измерения, который в зависимости от вида измерения может быть представлен значениями показатели точности и формы представления результатов измерений - student2.ru , показатели точности и формы представления результатов измерений - student2.ru или показатели точности и формы представления результатов измерений - student2.ru , а Δн и Δв — нижняя и верхняя границы, в которых с установленной вероятностью Р находится Δ. При симметричной функции Δ результат измерения можно записать в виде

А±Δ; P

причем числовое значение А должно оканчиваться цифрой того же разряда, что и значение Δ.

Если в суммарной погрешности результата измерения превалирует систематическая составляющая, точность измерения рекомендуется выражать интервалом, в котором с установленной вероятностью находится систематическая составляющая Δc, стандартной аппроксимацией функции распределения (см. табл. 1.1) случайной составляющей показатели точности и формы представления результатов измерений - student2.ru и оценкой СКО показатели точности и формы представления результатов измерений - student2.ru ( показатели точности и формы представления результатов измерений - student2.ru ). Этому способу соответствует следующая форма представления результата измерения:

А; ΔC от ΔСН до ΔСВ; PC; показатели точности и формы представления результатов измерений - student2.ru

где Δcн и Δсв — нижняя и верхняя границы, в которых с установленной вероятностью Рс находится ΔС.

В тех случаях, когда значительны по уровню и Δс, и показатели точности и формы представления результатов измерений - student2.ru , точность измерения удобно выразить стандартными аппроксимациями функций распределения Δс, и показатели точности и формы представления результатов измерений - student2.ru и оценками СКО показатели точности и формы представления результатов измерений - student2.ru (Δс) и показатели точности и формы представления результатов измерений - student2.ru ( показатели точности и формы представления результатов измерений - student2.ru );

А; показатели точности и формы представления результатов измерений - student2.ru

Наконец, при сложных измерениях, когда реальные функции распределения значительно отличаются от стандартных аппроксимаций, эти функции целесообразно использовать для выражения точности измерения. Результат измерения в этом случае должен быть представлен в форме

A; показатели точности и формы представления результатов измерений - student2.ru

где fΔc и fΔ —реальные функции распределения Δс и показатели точности и формы представления результатов измерений - student2.ru , задаваемые таблицами, графиками или формулами (обе функции должны быть выражены в одинаковой форме).

Конкретный выбор показателей точности измерений и формы представления их результатов определяется назначением измере­ний и характером использования их результатов.

Наши рекомендации