Лекция 5. ВНУТРИКАДРОВОЕ КОДИРОВАНИЕ ТЕЛЕВИЗИОННОГО СИГНАЛА

Импульсно-кодовой модуляции,как уже мы отмечали, в телевидении присуща значительная избыточность в передаваемой информации. Информационная избыточность заключена в специфике ТВ сигнала. Эту избыточность подразделяют на статистическую, психофизиологическую и структурную.

Уменьшение цифрового потока ТВ сигнала за счет сокращения статистической и физиологической избыточности в изображении осуществляется в телевидении применением более эффективных методов кодирования по сравнению с ИКМ. При большом их многообразии наиболее широко распространены следующие виды эффективного кодирования: кодирование с предсказанием, кодирование с линейным ортогональным преобразованием, взвешенное квантование, энтропийное кодирование или кодирование с переменной длиной. Перечисленные виды кодирования могут использоваться как самостоятельно, так и в сочетании друг с другом, давая в последнем случае значительно больший эффект при компрессии цифровых сигналов.

В настоящее время существуют стандарты компрессии, которые определяют основные правила эффективного кодирования и декодирования цифровых потоков, как изображений, так и связанного с ними звукового сопровождения. Эти стандарты получили общее наименование MPEG, представляющее собой аббревиатуру от названия, разрабатывавшего их международного комитета — Moving Pictures Experts Group (Группа экспертов по движущимся изображениям).

Избыточность информации в потоке цифровых данных объясняется, прежде всего, спецификой ТВ изображения. Известно, что, несмотря на равновероятность любых из возможных значений яркости (цветности) для одного элемента изображения, содержание соседствующих с пим элементов мало отличается или не отличается вовсе. При поэлементной передаче яркости и цветности методом ИКМ в канал посылается одна и та же или мало отличающаяся по содержанию информация. Подобную избыточность информации в сигнале называют пространственной или внутрикадровой.

Значительная избыточность содержится и в передаче смежных во времени кадров изображения, в которых, несмотря на движение отдельных фрагментов, существенную роль играют общие для них неподвижный фон или задний план. Такого рода избыточность называют временной или межкадровой. И пространственная, и временная избыточность обусловлены статистическими свойствами телевизионного изображения.

Устранение избыточности информации в цифровом сигнале, в конечном счете, должно выразиться в уменьшении числа отсчетов сигнала и (или) уменьшении разрядности их двоичных кодовых символов. Реализация таких процедур напрямую с ИКМ сигналом недопустима, так как изъятие из сигнала отдельных отсчетов или замена их значений на более грубо проквантованные соответствует изъятию в воспроизводимом изображении соответствующих элементов ил и их искаженному представлению. Попытка изъятия отдельных элементов из группы равноправных слагаемых изображения, как с информационной, так и с энергетической точки зрения приводит к необратимой потере качества изображения.

Решение задачи по устранению избыточности информации в цифровом сигнале возможно только путем его предварительной обработки, которая должна перераспределить вклад отдельных отсчетов преобразованного сигнала в общее содержание изображения. Перераспределив, таким образом, функциональную значимость между отдельными отсчетами, можно будет выделить «главные» отсчеты, несущие основной объем информации, обеспечив им наилучшие условия передачи, а на остальных отсчетах «сэкономить», не передавая их или передавая с минимальным числом градаций.

К настоящему времени предложено сравнительно много методов обработки сигнала с таким подходом.

5.1. Дискретно-косинусное преобразование

Методы преобразования изображения в общем случае основаны на том, что его цифровой эквивалент (сигнал ИКМ) приводится к виду, удобному для сокращения избыточной информации. В этом отношении наиболее эффективным является преобразование видеоинформации из временной области в спектральную. Это преобразование, как правило, предваряется разбивкой изображения на частичные подобласти, фрагменты (в терминологии МРЕG — блоки), которые затем по отдельности подвергаются необходимой обработке. Результат преобразования представляет собой совокупность спектральных коэффициентов, которые характеризуют амплитуды пространственных частот изображения.

В основу преобразования изображений могут быть положены различные приемы. Наиболее часто используются методы линейных ортогональных преобразований. Линейность преобразований означает, что операции сложения, вычитания и умножения на скаляр действительны в после преобразований, а ортогональность — что преобразуемый фрагмент представляется ограниченным набором ортогональных функций. Линейные преобразования можно осуществлять как с непрерывным, так и с дискретным сигналом. В первом случае процессу преобразования соответствует интегральная форма записи, во втором — матричная.

Из различных ортогональных преобразований, позволяющих эффективно выявлять избыточную информацию, стандартом MPEG рекомендовано использовать дискретно-косинусное преобразование (ДКП), являющееся частным случаем двумерного преобразования Фурье. Как известно, преобразование Фурье — это метод обработки, который, анализируя изменения сигнала во времени, выражает их в виде частотного спектра. Любой сигнал можно разложить на частотные гармонические составляющие, и затем по известным значениям амплитуды в фазы этих составляющих их линейным суммировав нем восстановить исходный сигнал. Последнюю операцию называют обратным преобразованием Фурье. В цифровых системах сигнал выражается последовательностью дискретных отсчетов. При использовании преобразования Фурье для фрагмента цифрового сигнала из некоторого ограниченного числа отсчетов последний можно разложить на такое же число дискретных частот. Это преобразование называют дискретным преобразованием Фурье.

Поскольку любое изображение или его фрагмент можно рассматривать как функцию изменения яркости (цветности) как по оси Х, так и по оси Y, то дискретное ортогональное преобразование Фурье будет представлять собой замену массива отсчетов изображения соответствующего фрагмента на массив коэффициентов, соответствующих амплитудам частотных составляющих Фурье.

Объем расчетов для нахождения этих коэффициентов весьма значителен. Поэтому преобразования осуществляются над небольшими по размеру фрагментами, обычно 8×8 элементов. Дискретно-косинусное преобразование Фурье в определенной степени минимизирует объем этих вычислений использованием в качестве набора преобразующих (базисных) функций только косинусных составляющих. В результате массиву исходных значений сигнала соответствует массив из такого же числа коэффициентов, представляющих собой амплитуды этих косинусных составляющих.

Лекция 5. ВНУТРИКАДРОВОЕ КОДИРОВАНИЕ ТЕЛЕВИЗИОННОГО СИГНАЛА - student2.ru

Рис.5.1 — Преобразование блока изображения f(x,y)в блок ДКП коэффициентов F(m,n):

а — блок изображения; б — блок коэффициентов ДКП

Аналитически двумерное дискретно-косинусное преобразование описывается следующим образом (рисунок 5.1):

Лекция 5. ВНУТРИКАДРОВОЕ КОДИРОВАНИЕ ТЕЛЕВИЗИОННОГО СИГНАЛА - student2.ru ,

где C(m) = 1 при m ≠ 1; С(m) = Лекция 5. ВНУТРИКАДРОВОЕ КОДИРОВАНИЕ ТЕЛЕВИЗИОННОГО СИГНАЛА - student2.ru приm = 0; C(n) = 1 при n ≠ 1; С(n) = Лекция 5. ВНУТРИКАДРОВОЕ КОДИРОВАНИЕ ТЕЛЕВИЗИОННОГО СИГНАЛА - student2.ru приn = 0; f(x,y) — отсчеты изображения с пространственными координатами x,y (от 0 до N-1); N— размер блока изображения (N×N элементов); F(m,n) — коэффициенты, характеризующие изображение в спектральной плоскости m, N (от 0 до N-1).

ДКП является обратимым: по распределению F(m,n) обратным преобразованием однозначно восстанавливается f(x,y).

Очевидно, что поскольку число отсчетов преобразуемого сигнала равно числу отсчетов преобразованного сигнала, устранения избыточности информации в результате такого преобразования не происходит. Однако следует обратить внимание на значительное изменение содержания блока коэффициентов ДКП по отношению к блоку преобразуемого изображения (рисунок 5.2).

Лекция 5. ВНУТРИКАДРОВОЕ КОДИРОВАНИЕ ТЕЛЕВИЗИОННОГО СИГНАЛА - student2.ru

Рис.5.2 — Пример дискретно-косинусного преобразования

для некоторого произвольного сюжета:

а — блок изображения; б — блок коэффициентов ДКП

По физическому смыслу блок коэффициентов ДКП представляет собой совокупность значений амплитуд пространственных косинусоидальных гармоник с частотами m и n. При этом значение F(0,0) пропорционально среднему уровню (постоянной составляющей) в блоке и может достигать при 256 уровнях квантования значения 2040. (Чтобы ошибки от округления коэффициентов ДКП не сказывались существенным образом на точности преобразования, их значения на этапе преобразования увеличены в восемь раз по сравнению с их действительными значениями).

Компоненты F(0,1) и F(1,0) характеризуют плавное изменение яркости в блоке вдоль строки и поперек строк соответственно. Разночастотные изменения яркостей пикселей с диагональными структурами характеризуются диагональными спектральными компонентами F(1,1), F(1,2), F(1,3)

Обычно для большинства блоков изображения лишь малая часть коэффициентов имеет значительную величину. Это объясняется небольшими размерами блока, внутри которого яркость меняется мало, и поэтому относительно большие величины имеют только постоянная составляющая и несколько низкочастотных компонентов, расположенных в левом верхнем углу матрицы коэффициентов ДКП.

Мелким деталям изображения, как известно, соответствуют высокие пространственные частоты, и коэффициенты ДКП характеризующие их амплитуды, располагаются правее и ниже. Поскольку, как правило, мелкие детали изображения выражены энергетически слабо относительно среднего уровня, то и соответствующие им коэффициенты ДКП по сравнению с F(0,0) малы или вообще равны нулю.

Таким образом, если передавать вместо значений яркости изображения коэффициенты ДКП, то сокращение скорости передачи данных может быть достигнуто уже хотя бы за счет исключения нулевых коэффициентов. Однако эта задача решается уже вне процедуры ДКП.

Наши рекомендации