Modern era: British Agricultural Revolution and Green Revolution

After 1492, a global exchange of previously local crops and livestock breeds1 occurred. Key crops involved in this exchange included the tomato, maize, potato, manioc, cocoa bean and tobacco going from the New World to the Old, and several varieties of wheat, spices2, coffee, and sugar cane going from the Old World to the New. The most important animal exportation from the Old World to the New were those of the horse and dog.

The potato became an important staple crop in northern Europe. Since being introduced by Portuguese in the 16th century, maize and manioc have replaced traditional African crops as the continent's most important staple food crops.

By the early 1800s, agricultural techniques, implements, seed stocks and cultivated plants3 had so improved that yield per land unit was many times that seen in the Middle Ages. With the rapid rise of mechanization in the late 19th and 20th centuries, particularly in the form of the tractor. These advances have led to efficiencies enabling certain modern farms in the United States, Argentina, Israel, Germany, and a few other nations to output volumes of high-quality produce per land unit. In the past century agriculture has been characterized by productivity, the substitution of labor for synthetic fertilizers and pesticides4.

The cereals, rice, corn, and wheat provide 60% of human food supply. Between 1700 and 1980, "the total area of cultivated land worldwide increased 466%" and yields increased dramatically, particularly because of selectively-bred high-yielding varieties,5 fertilizers, pesticides, irrigation, and machinery. For example, irrigation increased corn yields in eastern Colorado by 400 to 500% from 1940 to 1997.

Intensive agriculture has become associated with decreased soil quality in India and Asia. The monocultures typically used in intensive agriculture increase the number of pests, which are controlled through pesticides. Integrated pest management (IPM)6, which has been promoted for decades and has had some notable success. Although the "Green Revolution" significantly increased rice yields in Asia, yield increases have not occurred in the past 15–20 years. The genetic "yield potential" has increased for wheat, but the yield potential for rice has not increased since 1966. It takes a decade or two for herbicide-resistant weeds7 to emerge, and insects become resistant to insecticides within about a decade. Crop rotation helps to prevent resistances.

Agricultural exploration expeditions, since the late nineteenth century, have been mounted to find new species and new agricultural practices in different areas of the world. Two early examples of expeditions include Frank N. Meyer's fruit- and nut-collecting trip to China and Japan from 1916-1918 and the Dorsett-Morse Oriental Agricultural Exploration Expedition to China, Japan, and Korea from 1929-1931 to collect soybean germplasm8 to support the rise in soybean agriculture in the United States.

In 2005, the agricultural output9 of China was the largest in the world, accounting for almost one-sixth of world share, followed by the EU, India and the USA. Six countries - the US, Canada, France, Australia, Argentina and Thailand - supply 90% of grain exports. The United States controls almost half of world grain exports. Water deficits, which are already spurring heavy grain imports in numerous middle-sized countries, including Algeria, Iran, Egypt, and Mexico, may soon do the same in larger countries, such as China or India.

Notes:

1 livestock breeds- породы с/х животных

2 spices-пряности

3 cultivated plants-возделываемые растения

4 synthetic fertilizers and pesticides- синтетические минеральные удобрения и пестициды

5 selectively-bred high- yielding varieties-селекционные высоко плодородные сорта

6 integrated pest management-комплексный контроль за насекомыми -вредителями

7 herbicide-resistant weeds- сорняки, устойчивые к действию гербицидов

8 soybean germplasm- протоплазма соевых бобов

9 agricultural output- выпуск с/х продукции

Crop production1 systems

Cropping systems vary among farms depending on the available resources, geography and climate of the farm, government policy, economic, social and political pressures, the philosophy and culture of the farmer. Shifting cultivation2 (or slash and burn) is a system in which forests are burnt, releasing nutrients to support cultivation of annualand then perennial crops3 for a period of several years. Then the plot is left fallow to regrow forest, and the farmer moves to a new plot, returning after many more years (10-20). This period is shortened if population density4 grows. Annual cultivation is the next phase of intensity in which there is no fallow period. This requires even greater nutrient and pest control inputs.

Further industrialization lead to the use of monocultures, when one cultivar5 is planted on a large acreage. Multiple cropping, in which several crops are grown sequentially in one year, and intercropping, when several crops are grown at the same time are other kinds of annual cropping systems known as polycultures.

In tropical environments, all of these cropping systems are practiced. In subtropical and arid environments, the timing and extent of agriculture may be limited by rainfall, either not allowing multiple annual crops in a year, or requiring irrigation. In all of these environments perennial crops are grown (coffee, chocolate). In temperate environments6, where ecosystems were predominantly grassland or prairie, highly productive annual cropping is the dominant farming system.

The last century has seen the intensification, concentration and specialization of agriculture, relying upon new technologies of agricultural chemicals (fertilizers and pesticides), mechanization, and plant breeding (hybrids and GMO's7).

Notes:

1 crop production- растениеводство

2 shifting cultivation-изменяющееся возделывание почвы ( вырубка и сжигание)

3 annual, perennial crops- однолетние, многолетние культуры

4 population density- плотность населения

5cultivar- культура

6temperate environments- умеренный климат

7GMO’s-измененный генетический код

Вариант №3

Transgenic plants

Transgenic plants1have been engineered to possess several desirable traits, including resistance to pests, herbicides or harsh environmental conditions2, improved product shelf life, and increased nutritional value. Since the first commercial cultivation of genetically modified plants in 1996, they have been modified to be tolerant to the herbicides glufosinate and glyphosate, to be resistant to virus damage as in Ringspot virus3 resistant GM papaya, grown in Hawaii, and to produce the Bt toxin, a potent insecticide. Most of transgenic varieties grown today are known as first generation transgenics4, because the transgenic trait provides benefits to farmers. Plants of the second generation should directly benefit the consumer with nutritional enhancement, taste, texture etc. Transgenic plants of the second generation are being developed by both public research institutions and private companies. However currently there is no such transgenic variety5 on the market. Genetically modified sweet potatoes have been enhanced with protein and other nutrients, while golden rice, developed by the International Rice Research Institute, has been discussed as a possible cure for Vitamin A deficiency. In January 2008, scientists altered a carrot so that it would produce calcium and become a possible cure for osteoporosis; however, people would need to eat 1.5 kilograms of carrots per day to reach the required amount of calcium.

The coexistence6 of GM plants with conventional and organic crops has raised significant concern in many European countries. Since there is separate legislation for GM crops7 and a high demand from consumers for the freedom of choice between GM and non-GM foods, measures are required to separate foods and feed produced from GMO plants from conventional and organic foods. European research programmes such are investigating appropriate tools and rules. At the field level, biological containment methods include isolation distances and pollen barriers.

Notes:

1transgenic plants-трансгенные растения

2 resistance to pests, herbicides or harsh environmental conditions-устойчивость к насекомым-вредителям, гербицидам и неблагоприятным климатическим условиям

3 ring spot virus-вирус кольцевой гнили

4 first generation transgenic-первое поколение трансгенной продукции

5 transgenic variety- трасгенный сорт

6 coexistence-сосуществование

7separate legislation-отдельные правовые нормативы на ГМ культуры

Cisgenic plants

While conventional transgenic plants are developed by introduction of a gene originating from distant, sexually incompatible species into the host genome, cisgenic plants contain genes which have been isolated either directly from the host species or from sexually compatible species. The new genes are however introduced using recombinant DNA methods2 and gene transfer.3 Principally the same result could be obtained by classical breeding4. However the disadvantage of classical breeding is that with one desired trait also a number of undesired traits5 are transferred and the number of backcrosses necessary to remove these undesired traits approaches infinity. Some scientist hope that the approval process of cisgenic plants might be simpler than that of proper transgenics, but it remains to be seen.

Notes:

1cisgenic plants - цисгенные растения

2 recombinant DNA methods - смешанные методы ДНК

3gene transfer - пересадка гена

4 classical breeding - классическое выведение сорта

5undesired traits - нежелательная характерная черта

Biological process

The use of GMOs has sparked significant controversy in many areas. Some groups or individuals see the generation and use of GMO as intolerable meddling with biological states or processes that have naturally evolved over long periods of time, while others are concerned about the limitations of modern science to fully comprehend all of the potential negative ramifications of genetic manipulation.

Foodchain

The safety of GMOs in the foodchain1 has been questioned by some environmental groups, with concerns such as the possibilities that GMOs could introduce new allergens into foods, or contribute to the spread of antibiotic resistance2. Although all studies conducted to date have shown no adverse health effects resulting from eating genetically modified foods, environmental groups still discourage consumption in many countries, claiming that GM foods are unnaturaland thereforeunsafe3. Such concerns have led to the adoption of laws and regulations that require safety testing of any new organism produced for human consumption.

GM proponents note that because of the safety testing requirements imposed on GM foods, the risk of introducing a plant variety with a new allergene or toxin using genetic modification is much smaller than using traditional breeding processes. An example of an allergenic plant created using traditional breeding include is the kiwi.

Notes:

1foodchain-магазины по продаже продовольствия

2antibiotic resistance- устойчивость к антибиотикам

3unnatural and unsafe- неестественный и небезопасный

Trade in Europe and Africa

In response to negative public opinion, it was announced to remove seed cereal business from Europe. Some African nations have refused emergency food aid from developed countries, fearing that the food is unsafe. During a conference in the Ethiopian capital of Addis Ababa, Kingsley Amoako, Executive Secretary of the United Nations Economic Commission for Africa (UNECA1), encouraged African nations to accept genetically modified food and expressed dissatisfaction in the public’s negative opinion of biotechnology.

Notes:

1 the United Nations Economic Commission for Africa (UNECA)-экономическая комиссия по Африке при ООН.

Вариант №4

Agricultural surpluses1

Chairman of the UK Food Group, accused some governments, especially the US administration, of using GM food aid as a way to dispose of unwanted agricultural surpluses. The UN blamed food companies2 of violating human rights, calling on governments to regulate these profit-driven firms. It is widely believed that the acceptance of biotechnology and genetically modified foods will also benefit rich research companies and could possibly benefit them more than consumers in underdeveloped nations.

Labeling

While some groups advocate the complete prohibition of GMOs, others call for mandatory labeling3 of genetically modified food or other products.

Notes:

1agricultural surpluses-избытки с/х продукции

2The UN blamed food companies -ООН предъявила обвинения продовольственным компаниям

3mandatory labeling—обязательная маркировка продукции , содержащая ГМО.

Underdeveloped nations

Some groups believe that underdeveloped nations will not reap the benefits of biotechnology because they do not have easy access to these developments, cannot afford modern agricultural equipment, and certain aspects of the system revolving around intellectual property rights are unfair to undeveloped countries. For example, The CGIAR (Consultative Group of International Agricultural Research)1 is an aid and research organization that has been working to achieve sustainable food security and decrease poverty in undeveloped countries since its formation in 1971. In an evaluation of CGIAR, the World Bank praised its efforts but suggested a shift to genetics research and productivity enhancement. This plan has several obstacles such as patents, commercial licenses, and the difficulty that third world countries have in accessing the international collection of genetic resources and other intellectual property rights that would educate them about modern technology. The International Treaty on Plant Genetic Resources for Food and Agriculture2has attempted to remedy this problem, but results have been inconsistent. As a result, "orphan crops3", such as teff, millets, cowpeas4, and indigenous plants5, are important in the countries where they are grown, but receive little investment.

Notes:

1The CGIAR (Consultative Group of International Agricultural Research)-

Наши рекомендации