Какая связь между алгеброй логики и двоичным кодированием?

Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера, поскольку основной системой счисления в компьютере является двоичная, в которой используются цифры 1 и 0, а значений логических переменных тоже два: “1” и “0”.

Из этого следует два вывода:

1. одни и те же устройства компьютера могут применяться для обработки и хранения как числовой информации, представленной в двоичной системе счисления, так и логических переменных;

2. на этапе конструирования аппаратных средств алгебра логики позволяет значительно упростить логические функции, описывающие функционирование схем компьютера, и, следовательно, уменьшить число элементарных логических элементов, из десятков тысяч которых состоят основные узлы компьютера.

В каком виде записываются в памяти компьютера и в регистрах процессора данные и команды?

Данные и команды представляются в виде двоичных последовательностей различной структуры и длины. Существуют различные физические способы кодирования двоичной информации. Мы уже рассмотрели способы записи двоичной информации на магнитных дисках и на CD-ROM. В электронных устройствах компьютера двоичные единицы чаще всего кодируются более высоким уровнем напряжения, чем двоичные нули (или наоборот), например:

Какая связь между алгеброй логики и двоичным кодированием? - student2.ru

Что такое логический элемент компьютера?

Логический элемент компьютера — это часть электронной логичеcкой схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И—НЕ, ИЛИ—НЕ и другие (называемые также вентилями), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Чтобы представить два логических состояния — “1” и “0” в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению “истина” (“1”), а низкий — значению “ложь” (“0”).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Что такое схемы И, ИЛИ, НЕ, И—НЕ, ИЛИ—НЕ?


С х е м а И

Схема И реализует конъюнкцию двух или более логических значений. Условное обозначение на структурных схемах схемы И с двумя входами представлено на рис. 5.1.

Какая связь между алгеброй логики и двоичным кодированием? - student2.ru

Рис. 5.1

Таблица истинности схемы И

x y x . y

Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет ноль, на выходе также будет ноль.

Связь между выходом z этой схемы и входами x и y описывается соотношением: z = x . y
(читается как "x и y"). Операция конъюнкции на структурных схемах обозначается знаком "&" (читается как "амперсэнд"), являющимся сокращенной записью английского слова and.

С х е м а ИЛИ

Схема ИЛИ реализует дизъюнкцию двух или более логических значений. Когда хотя бы на одном входе схемы ИЛИ будет единица, на её выходе также будет единица.

Условное обозначение на структурных схемах схемы ИЛИ с двумя входами представлено на рис. 5.2. Знак "1" на схеме — от устаревшего обозначения дизъюнкции как ">=1" (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом z этой схемы и входами x и y описывается соотношением: z = x v y (читается как "x или y").

Какая связь между алгеброй логики и двоичным кодированием? - student2.ru

Рис. 5.2

Таблица истинности схемы ИЛИ

x y x v y


С х е м а НЕ

Схема НЕ (инвертор) реализует операцию отрицания. Связь между входом x этой схемы и выходом z можно записать соотношением z = Какая связь между алгеброй логики и двоичным кодированием? - student2.ru , x где Какая связь между алгеброй логики и двоичным кодированием? - student2.ru читается как "не x" или "инверсия х".

Если на входе схемы 0, то на выходе 1. Когда на входе 1, на выходе 0. Условное обозначение на структурных схемах инвертора — на рисунке 5.3

Какая связь между алгеброй логики и двоичным кодированием? - student2.ru

Рис. 5.3

Таблица истинности схемы НЕ

x Какая связь между алгеброй логики и двоичным кодированием? - student2.ru


С х е м а И—НЕ

Схема И—НЕ состоит из элемента И и инвертора и осуществляет отрицание результата схемы И. Связь между выходом z и входами x и y схемы записывают следующим образом: Какая связь между алгеброй логики и двоичным кодированием? - student2.ru , где Какая связь между алгеброй логики и двоичным кодированием? - student2.ru читается как "инверсия x и y". Условное обозначение на структурных схемах схемы И—НЕ с двумя входами представлено на рисунке 5.4.

Какая связь между алгеброй логики и двоичным кодированием? - student2.ru

Рис. 5.4

Таблица истинности схемы И—НЕ

x y Какая связь между алгеброй логики и двоичным кодированием? - student2.ru


С х е м а ИЛИ—НЕ

Схема ИЛИ—НЕ состоит из элемента ИЛИ и инвертора и осуществляет отрицание результата схемы ИЛИ. Связь между выходом z и входами x и y схемы записывают следующим образом: Какая связь между алгеброй логики и двоичным кодированием? - student2.ru , где Какая связь между алгеброй логики и двоичным кодированием? - student2.ru , читается как "инверсия x или y ". Условное обозначение на структурных схемах схемы ИЛИ—НЕ с двумя входами представлено на рис. 5.5.

Какая связь между алгеброй логики и двоичным кодированием? - student2.ru

Рис. 5.5

Таблица истинности схемы ИЛИ—НЕ

x y Какая связь между алгеброй логики и двоичным кодированием? - student2.ru

Что такое триггер?

Триггер — это электронная схема, широко применяемая в регистрах компьютера для надёжного запоминания одного разряда двоичного кода. Триггер имеет два устойчивых состояния, одно из которых соответствует двоичной единице, а другое — двоичному нулю.

Термин триггер происходит от английского слова trigger — защёлка, спусковой крючок. Для обозначения этой схемы в английском языке чаще употребляется термин flip-flop, что в переводе означает “хлопанье”. Это звукоподражательное название электронной схемы указывает на её способность почти мгновенно переходить (“перебрасываться”) из одного электрического состояния в другое и наоборот.

Самый распространённый тип триггера — так называемый RS-триггер (S и R, соответственно, от английских set — установка, и reset — сброс). Условное обозначение триггера — на рис. 5.6.

Какая связь между алгеброй логики и двоичным кодированием? - student2.ru
Рис. 5.6

Он имеет два симметричных входа S и R и два симметричных выхода Q и Какая связь между алгеброй логики и двоичным кодированием? - student2.ru , причем выходной сигнал Q является логическим отрицанием сигнала Какая связь между алгеброй логики и двоичным кодированием? - student2.ru .

На каждый из двух входов S и R могут подаваться входные сигналы в виде кратковременных импульсов ( Какая связь между алгеброй логики и двоичным кодированием? - student2.ru ).

Наличие импульса на входе будем считать единицей, а его отсутствие — нулем.

На рис. 5.7 показана реализация триггера с помощью вентилей ИЛИ—НЕ и соответствующая таблица истинности.

Какая связь между алгеброй логики и двоичным кодированием? - student2.ru
Рис. 5.7

S R Q Какая связь между алгеброй логики и двоичным кодированием? - student2.ru
запрещено
хранение бита

Проанализируем возможные комбинации значений входов R и S триггера, используя его схему и таблицу истинности схемы ИЛИ—НЕ (табл. 5.5).

1. Если на входы триггера подать S=“1”, R=“0”, то (независимо от состояния) на выходе Q верхнего вентиля появится “0”. После этого на входах нижнего вентиля окажется R=“0”, Q=“0” и выход Какая связь между алгеброй логики и двоичным кодированием? - student2.ru станет равным “1”.

2. Точно так же при подаче “0” на вход S и “1” на вход R на выходе Какая связь между алгеброй логики и двоичным кодированием? - student2.ru появится “0”, а на Q — “1”.

3. Если на входы R и S подана логическая “1”, то состояние Q и Какая связь между алгеброй логики и двоичным кодированием? - student2.ru не меняется.

4. Подача на оба входа R и S логического “0” может привести к неоднозначному результату, поэтому эта комбинация входных сигналов запрещена.

Поскольку один триггер может запомнить только один разряд двоичного кода, то для запоминания байта нужно 8 триггеров, для запоминания килобайта, соответственно, 8 х 210 = 8192 триггеров. Современные микросхемы памяти содержат миллионы триггеров.

Что такое сумматор?

Сумматор — это электронная логическая схема, выполняющая суммирование двоичных чисел.

Сумматор служит, прежде всего, центральным узлом арифметико-логического устройства компьютера, однако он находит применение также и в других устройствах машины.

Многоразрядный двоичный сумматор, предназначенный для сложения многоразрядных двоичных чисел, представляет собой комбинацию одноразрядных сумматоров, с рассмотрения которых мы и начнём. Условное обозначение одноразрядного сумматора на рис. 5.8.

Какая связь между алгеброй логики и двоичным кодированием? - student2.ru
Рис. 5.8

При сложении чисел A и B в одном i-ом разряде приходится иметь дело с тремя цифрами:

1. цифра ai первого слагаемого;

2. цифра bi второго слагаемого;

3. перенос pi–1 из младшего разряда.

В результате сложения получаются две цифры:

1. цифра ci для суммы;

2. перенос pi из данного разряда в старший.

Таким образом, одноразрядный двоичный сумматор есть устройство с тремя входами и двумя выходами, работа которого может быть описана следующей таблицей истинности:

Входы Выходы
Первое слагаемое Второе слагаемое Перенос Сумма Перенос

Если требуется складывать двоичные слова длиной два и более бит, то можно использовать последовательное соединение таких сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого.

Например, схема вычисления суммы C = (с3 c2 c1 c0) двух двоичных трехразрядных чисел A = (a2 a1 a0) и B = (b2 b1 b0) может иметь вид:

Какая связь между алгеброй логики и двоичным кодированием? - student2.ru

Наши рекомендации