Общее устройство и рабочий цикл одноцилиндрового бензинового двигателя
Рассмотрим принцип работы простейшего одноцилиндрового бензинового двигателя (рис. 2.3). Такой двигатель состоит из цилиндра, к которому прикручена съемная головка.
В цилиндре находится поршень. Он имеет форму цилиндрического стакана, состоящего из головки и юбки (рис. 2.4). На поршне есть канавки, в которых установлены поршневые кольца. Их задача - обеспечить герметичность пространства над поршнем, не дав возможности газам, образующимся при работе двигателя, прорваться под поршень, а также не допустить попадание масла, смазывающего внутреннюю поверхность цилиндра, в пространство над поршнем. Эти кольца играют роль уплотнителей, причем те из них, которые не пропускают газы, назвали компрессионными, а оберегающие от масла - маслосъемными. Цилиндр необходимо заправить топливной смесью бензина с воздухом, приготовленной карбюратором или инжектором, сжать ее поршнем и поджечь, а она, сгорая и расширяясь, заставит поршень двигаться вниз. Так тепловая энергия топлива превратится в механическую.
Теперь необходимо преобразовать перемещение поршня во вращение вала. Для этого использовали следующее механическое приспособление: поршень с помощью пальца и шатуна шарнирно соединили с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 2.3 и 2.4). В результате перемещение поршня в цилиндре сверху вниз и обратно легко преобразуется во вращение вала. Верхней мертвой точкой, сокращенно ВМТ, называют самое верхнее положение поршня в цилиндре (т.е. то место, где поршень перестает двигаться вверх и начинает движение вниз) (рис. 2.5).
Самое нижнее положение поршня в цилиндре (т.е. то место, где поршень перестает двигаться вниз и начинает движение вверх) называют нижней мертвой точкой, сокращенно НМТ (см. рис. 2.5).
Расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня (см. рис. 2.5). При перемещении поршня сверху вниз (от ВМТ до НМТ) объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ называется камерой сгорания (см. рис. 2.5).
Объем, освобождаемый в цилиндре поршнем при его перемещении от ВМТ до НМТ, называют рабочим объемом цилиндра - Vp (см. рис. 2.5).
Рабочий объем всех цилиндров двигателя, выраженный в литрах, называется литражом двигателя. Полным объемом цилиндра называется сумма его рабочего объема и объема камеры сгорания. Этот объем заключен над поршнем при его положении в НМТ. Важной характеристикой двигателя является его степень сжатия. Она определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр смесь при перемещении поршня снизу вверх (от НМТ к ВМТ). У бензиновых двигателей степень сжатия находится в пределах 6-14, у дизельных - 14-24. Степень сжатия во многом определяет мощность двигателя и его экономичность, существенно влияет на токсичность отработавших газов.
Рис. 2.4. Поршень: 1 - маслосъемное кольцо; 2 - компрессионные кольца; 3 - поршневой палец; 4 - стопорное кольцо; 5 - юбка поршня; 6 - втулка; 7 - болт; 8 - вкладыши; 9 - шатун; 10 - крышка шатуна |
Мощность двигателя измеряется в киловаттах либо в лошадиных силах (1 л.с. примерно равна 0,735 кВт). Работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре смеси топлива и воздуха. Как уже говорилось, в бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (см. рис. 2.3), в дизелях - от сжатия.
Совокупность последовательных процессов, периодически повторяющихся в каждом цилиндре двигателя и обеспечивающих его непрерывную работу, называется рабочим циклом.
Рабочий цикл четырехтактного двигателя состоит из четырех тактов, каждый из которых происходит за один ход поршня или за пол-оборота коленчатого вала. Полный рабочий цикл осуществляется за два оборота коленчатого вала.
При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно, он резко ускоряется в момент сгорания горючей смеси, а все остальное время замедляется. Для повышения равномерности вращения на валу коленчатого вала, выходящего наружу из корпуса двигателя, закрепляют массивный диск (маховик) - рис. 2.6. Когда двигатель работает, вал с маховиком вращаются.
Теперь поговорим немного подробнее о работе такого двигателя.
Итак, первая задача - поместить внутрь цилиндра (в пространство над поршнем) топливовоздушную смесь, которую, как вы помните, приготовил карбюратор или инжектор. Это действие называют тактом впуска (первый такт). На рис. 2.7-2.10 показан принцип работы инжекторного двигателя. Заполнение цилиндра двигателя топ- ливовоздушной смесью очень похоже на заполнение шприца лекарством (см. рис. 2.7): поршень из верхнего положения движется в нижнее. Но в шприце лекарство набирается, а затем выпускается через один и тот же канал (иглу). В двигателе же горючая смесь впускается че-
Рис. 2.6 |
рез один канал, а продукты ее сгорания - через другой, т.е. к цилиндру двигателя подведены сразу два канала: впускной и выпускной. Непосредственно перед входом в цилиндр в этих каналах установлены клапаны. Их принцип действия очень прост: представьте себе гвоздь с большой круглой шляпкой, перевернутый «вверх ногами» (шляпкой вниз). Эта круглая шляпка закрывает вход из канала в цилиндр. При этом она прижимается к кромке канала мощной пружиной и как пробкой закупоривает его (см. рис. 2.15). Если нажать на клапан (тот самый «гвоздь»), преодолев сопротивление пружины, то вход в цилиндр из канала будет открыт (см. рис. 2.16). Теперь, познакомившись с принципом работы клапанов, вернемся к первому такту работы двигателя.
Первый такт - такт ВПУСКА.
Первый такт - впуск или, как иногда говорят, всасывание горючей смеси (см. рис. 2.7). Во время этого такта поршень перемещается из верхней мертвой точки в нижнюю. Впускной клапан при этом открыт, а выпускной надежно закрыт. Через впускной клапан цилиндр заполняется горючей смесью. Все это продолжается до того момента, пока поршень не окажется в нижней мертвой точке, т.е. его дальнейшее движение вниз окажется невозможным. Мы уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. За первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) он повернется на пол-оборота.
Второй такт - такт СЖАТИЯ.
До сих пор топливовоздушную смесь, приготовленную инжектором или карбюратором, мы называли горючей. А вот теперь (после того как она попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан) будем называть ее рабочей. Итак, наступил момент, когда рабочая смесь заполнила цилиндр и пути ее отхода оказались отрезанными, поскольку впускной и выпускной клапаны надежно закрыты. Теперь поршень, начав движение снизу вверх (от нижней мертвой точки к верхней), попытается прижать рабочую смесь к головке цилиндра (см. рис. 2.8). Однако «стереть в порошок» эту смесь ему не удастся. Вы же помните, что преступить черту верхней мертвой точки поршень не в силах. А внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, «застывшим» в верхней мертвой точке, всегда оставалось пусть и не очень большое, но свободное пространство. Напомним, что это пространство называют камерой сгорания.
К концу такта сжатия давление в цилиндре возрастает до 0,8-1,2 МПа, а температура достигает 450-500 °С. Для того чтобы получить максимальную отдачу, хотелось бы сжать рабочую смесь как можно сильнее. Представьте себе, что вы пальцем закрыли выходное отверстие обыкновенного велосипедного насоса и сжимаете воздух. Чем сильнее сожмете, тем с большей силой «выстрелит» вверх рукоятка насоса, связанная с поршнем. Однако степень сжатия рабочей смеси во время такта сжатия ограничивается свойствами применяемого бензина, в первую очередь его антидетонационной стойкостью, характеризуемой октановым числом (у бензи
нов оно изменяется от 66 до 98). Чем выше октановое число, тем больше антидетонационная стойкость топлива. При чрезмерно высокой степени сжатия или низкой антидетонационной стойкости бензина может происходить детонационное (от сжатия) воспламенение смеси и нарушаться нормальная работа двигателя. Третий такт - РАБОЧИЙ ХОД.
Вот теперь мы подошли к самому главному моменту - превращению тепловой энергии в механическую. В начале третьего такта, даже с некоторым опережением (на самом деле в конце такта сжатия), горючая смесь воспламеняется с помощью электрической искры свечи зажигания (см. рис. 2.9).
Давление от расширяющихся газов передается на поршень, и он начинает движение вниз (от ВМТ к НМТ). При этом оба клапана (впускной и выпускной) закрыты. Смесь сгорает с выделением большого количества тепла. Из-за этого давление в цилиндре резко возрастает и поршень с большой силой перемещается вниз, приводя во вращение через шатун коленчатый вал. В момент сгорания температура в цилиндре повышается до 1800-2000 °С, а давление - до 2,5-3,0 МПа. Обратите внимание, что только из-за третьего такта и создавался двигатель, хотя без остальных тактов он бы не состоялся. Поэтому все такты, кроме такта рабочего хода, иногда называют вспомогательными. А нам еще предстоит познакомиться с последним из вспомогательных тактов.
Четвертый такт - такт ВЫПУСКА.
В течение этого такта впускной клапан закрыт, а выпускной открыт. Поршень, перемещаясь снизу вверх (от НМТ к ВМТ), выталкивает оставшиеся в цилиндре после сгорания и расширения отработавшие газы через открытый выпускной клапан в выпускной канал (трубопровод) и далее через систему выпуска отработавших газов, наиболее известным представителем которой является глушитель, в атмосферу (см. рис. 2.10). Все четыре такта периодически повторяются в рассмотренной последовательности в цилиндре двигателя, обеспечивают его непрерывную работу и называются рабочим циклом.
Рабочий цикл дизельного двигателя имеет некоторые отличия (см. рис. 2.2). При такте впуска по впускному трубопроводу в цилиндр поступает не горючая смесь, а чистый воздух. Во время такта сжатия он сжимается и нагревается. В конце этого такта, когда поршень, двигаясь вверх, подходит к ВМТ, в цилиндр через специальное устройство - форсунку, ввернутую в верхнюю часть головки цилиндра, под большим давлением впрыскивается мелкораспыленное дизельное топливо. Соприкасаясь с раскаленным воздухом, частицы топлива быстро сгорают. При этом выделяется большое количество тепла, в результате чего температура в цилиндре повышается до 1700-2000 °С, а давление - до 7-8 МПа. Под действием давления газов поршень перемещается вниз - происходит рабочий ход. Такт выпуска у дизельного двигателя аналогичен одноименному такту бензинового двигателя. Как мы уже сказали, лишь во время третьего такта (рабочий ход) совершается полезная механическая работа. Остальные три такта - вспомогательные. Они совершаются за счет кинетической энергии тщательно сбалансированного массивного чугунного диска, закрепленного на валу двигателя. Этот диск называют маховиком (см. рис. 2.6 и 2.11). Кроме обеспечения равномерного вращения коленчатого вала, маховик также способствует преодолению сопротивления сжа
тия в цилиндрах двигателя при его пуске, а также позволяет ему преодолевать кратковременные перегрузки, например, при трогании автомобиля с места. На ободе маховика закреплен зубчатый венец для пуска двигателя стартером. Во время третьего такта (рабочего хода) поршень через шатун, кривошип и коленчатый вал двигателя передает запас инерции маховику.Накопленная таким образом инерция помогает маховику осуществлять вспомогательные такты рабочего цикла двигателя. В результате при тактах впуска, сжатия и выпуска поршень перемещается в цилиндре именно за счет энергии, отдаваемой маховиком. В многоцилиндровом двигателе порядок работы цилиндров устанавливается так, что рабочий ход, совершаемый в данный момент хотя бы в одном цилиндре, помогает проведению вспомогательных тактов плюс оказывает помощь энергетическое донорство маховика.