Механизм изнашивания шин
Причиной износа покрышек является трение протектора о поверхность покрытия дороги в процессе качения колеса. При входе и выходе из пятна контакта происходит изменение формы беговой дорожки покрышки из кольцевой формы к плоской. При этом возникают касательные напряжения и напряжения сжатия q, вызванные нагрузкой. Напряжения сжатия в пятне контакта возрастают от «0» на границе до максимального значения в центре пятна. На краях пятна контакта, где касательные напряжения больше силы сцепления элементов протектора, происходит скольжение, сопровождающееся износом. Вместе с тем, трение и деформация сопровождаются повышением температуры элементов беговой дорожки. Известно, что резина является термопластичным материалом. Повышение температуры с 0 до 100 снижает прочность межмолекулярных связей в 2–3 раза.
Подавляющее число факторов, влияющих на интенсивность износа покрышек, связано с перераспределением и изменением величин вышеупомянутых причин.
Поперечные касательные напряжения в зоне контакта пропорциональны углу бокового увода , боковой жёсткости Ку и по длине контакта линейно возрастают от нуля до максимального значения.
Для пневматической шины боковая жёсткость зависит от конструкции каркаса и протектора, а также от внутреннего давления, и поэтому максимальное значение касательного напряжения равно
(7.1)
где Н - высота профиля шины, К - коэффициент пропорциональности.
Проскальзывание равно
(7.2)
где k1 - конструктивный коэффициент; - длина контакта.
При нагружении колеса крутящим или тормозным моментом Mk можно принять, что продольное касательное напряжение на контакте распределено по длине контакта по закону треугольника ( = 0 на входе и = T на выходе из контакта), а величина проскальзывания
(7.3)
где Kx - конструктивный коэффициент в окружном направлении; kx - жёсткость в окружном направлении; R - радиус качения.
Итак, под действием касательных напряжений возникает проскальзывание, что вызывает износ. Поэтому необходимо рассмотреть механизм изнашивания резины в условиях проскальзывания.
По существующим представлениям износ высокоэластичных полимерных материалов может быть усталостным посредством «скатывания» и абразивным.
При усталостном износе разрушение поверхностного слоя резины происходит после многократных деформаций его выступами истирающей поверхности. Усталостный износ является основным видом износа автомобильных шин, при этом на поверхности протектора не образуется видимых следов истирания.
Так как поверхности реальных тел всегда шероховаты, то контакт между ними всегда дискретен, т.е. происходит в отдельных пятнах касания. Пятна касания, возникающие вследствие совместного действия нормальной и продольной нагрузок, носят название фрикционных связей.
Процесс трения и изнашивания можно представить происходящим по трём последовательным этапам:
- образование фрикционных связей при изменяющихся деформациях и развивающихся температурах;
- нарушение фрикционных связей;
- разрушение поверхности.
В общем случае различают пять видов нарушения фрикционных связей:
1. Микрорезание и царапание, которые проявляются при наличии острых выступов на истирающей поверхности и больших контактных давлениях, когда легко достигается предел прочности материала. Отделение материала происходит в результате однократного воздействия.
2. Пластическое оттеснение, которое характеризуется наличием тупых выступов при средних нагрузках. Отделение материала происходит в результате большого числа циклов деформации.
3. Упругое оттеснение, при котором материал обтекает движущийся выступ, а затем восстанавливает свою первоначальную форму. Число циклов до разрушения может быть велико. Это наиболее типичный случай при истирании резины.
4. Адгезионный отрыв, обуславливающий молекулярную составляющую силы трения на поверхности соприкосновения. Адгезия всегда сопровождает любой вид взаимодействия, но, как правило, невелика по сравнению с объёмной прочностью материала.
5. Когезионный отрыв, т.е. схватывание поверхностей, сопровождающееся глубинным вырыванием материала.
Нормальный износ протектора автомобильных шин происходит при третьем виде нарушения фрикционных связей, т.е. при упругом оттеснении.
В результате многократно повторяющихся воздействий происходит разрушение и отделение частиц износа с поверхности трения. Такой процесс разрушения поверхности трения рассматривается как фрикционно-контактная усталость материала.
Основные закономерности интенсивности износа при упругом контакте следующие:
1. Интенсивность износа зависит от нагрузки и степени, большей единицы.
2. Интенсивность износа возрастает с увеличением коэффициента трения.
3. Увеличение модуля упругости материала приводит к увеличению интенсивности износа.
4. Интенсивность износа снижается при улучшении прочностных характеристик материала.
Предрасположенность к износу посредством скатывания наблюдается у мягких резин, особенно при повышенных нагрузках.
Типичный рисунок истирания представляет собой систему параллельно чередующихся гребней и впадин, расположенных перпендикулярно направлению истирания.
Сначала появляются раздиры и трещины, возникающие в результате действия сил трения, когда напряжения сдвига превышают прочность резины. Появление рисунка истирания происходит из-за повышения температуры нагрева и размягчения резины. Разрушения начинаются обычно там, где поверхность резины находится в состоянии наибольшего расстояния.
Если возникла трещина, то дальнейшее разрушение происходит под действием уже меньшего усилия. Истирание посредством скатывания может происходить лишь в определённом сочетании внешних условий и свойств резины.
Интенсивность износа шин на дорогах со щебёнчатым покрытием вследствие среза поверхности шашек, царапин, надрывов и т.д. значительно выше, чем на дорогах с асфальтобетонным покрытием, так как имеет место абразивный износ.
В реальных условиях эксплуатации истирание протекторных резин происходит по смешанному механизму износа. Суммарная интенсивность износа определяется соотношением отдельных видов износа.
Температура на поверхности трения является основным фактором, определяющим интенсивность изнашивания резины и её разрушения.
В процессе эксплуатации температура шины повышается под действием силы трения и из-за деформации. Из дифференциального уравнения баланса теплоты, которая выделилась при трении шины о дорогу и пошла на нагрев шины и окружающей среды:
(7.4)
где - время работы; F - сила трения в месте контакта шины с дорогой; Fш - площадь охлаждения шины; t0 - температура окружающей среды; t - температура шины; Сш - теплоёмкость шины; Т - коэффициент теплоотдачи от шины в окружающую среду.
Ясно видно, что повышение температуры шины при прочих одинаковых условиях пропорционально силе трения:
(7.5)
Изучение и предупреждение причин преждевременного износа и разрушения шин связано с необходимостью умения определить их виды износа и разрушений, безошибочно выявлять причину, вызвавшую каждое конкретное разрушение или вид износа шин или определить основную причину, вызвавшую данное разрушение или вид износа.
Все шины, вышедшие из эксплуатации, разделяют на две категории: I – с нормальным и II – с преждевременным износом или естественным износом (разрушением) новых и первично восстановленных шин, подразумевают естественный износ, наступивший по выполнении шиной эксплуатационной нормы пробега (действующей в данном АТП) и пригодной для восстановления.
Нормальным износом (разрушением) повторно восстановленной шины считается износ, наступивший по выполнении его эксплуатационной нормы пробега независимо от пригодности или непригодности этой шины к последующему восстановлению.
Указанный критерий определения нормального износа (разрушения) шин является условным. Шины с видами износа и разрушения, не отвечающие указанному критерию, относятся ко IIкатегории.
Все факторы, влияющие на износ шин, с точки зрения их реализации с целью увеличения ресурса шин целесообразно классифицировать по признаку управляемости техническим персоналом АТП (рис. 7.1).
Рис. 7.1. Классификация факторов изнашивания покрышек по признаку управляемости
ИЗМЕНЕНИЕ ТЕХНИЧЕСКОГО СОСТОЯНИЯ АВТОМОБИЛЬНЫХ ШИН