Справочный материал по Физиологии.
Справочный материал по Физиологии.
Организация и функция синапса
В синапсе различают пресинаптическую часть, постсинаптическую часть и расположенную между клетками синаптическую щель (см. рис 6–1Б и 6–6, а также рис. 6–5 в книге).
Пресинаптическая часть
Пресинаптическая часть содержит синаптические пузырьки с нейромедиатором, элементы цитоскелета и митохондрии. В пресинаптическую мембрану встроены потенциалозависимые Ca2+‑каналы. При поступлении ПД к терминальному расширению мембрана деполяризуется, Ca2+‑каналы открываются, ионы Ca2+ входят в терминаль, запуская в активных зонах процесс слияния мембраны синаптического пузырька и пресинаптической мембраны, т.е. секрецию (экзоцитоз) нейромедиатора (рис. 6–6, позиции 2–4).
· Роль Са2+. Слияние синаптических пузырьков с пресинаптической мембраной происходит при увеличении концентрации Са2+ в цитозоле нервной терминали. Белок синаптического пузырька синаптотагмин связывается с Са2+ и тем самым принимает участие в регуляции экзоцитоза (в том числе путём реорганизации примембранного цитоскелета).
· Синаптические пузырьки. Молекулы нейромедиатора накапливаются в нервной терминали, находясь внутри синаптических пузырьков вместе с АТФ и некоторыми катионами. В каждом пузырьке находится несколько тысяч молекул нейромедиатора, что составляет квант нейромедиатора.
à Синтез нейромедиатора. Ферменты, необходимые для образования нейромедиаторов, синтезируются в перикарионе и транспортируются к синаптической терминали по аксонам (рис. 6–4).
à Типы пузырьков — мелкие (диаметр порядка 50 нм) и крупные (диаметр 100–200 нм). Мелкие синаптические пузырьки содержат «классические» медиаторы (см. ниже). Крупные везикулы содержат нейропептиды.
à Секреция. Когда ПД достигает нервной терминали, синаптические пузырьки сливаются с пресинаптической мембраной, что приводит к выделению квантов нейромедиатора в синаптическую щель. Незначительное количество квантов нейромедиатора постоянно (спонтанно) секретируется в синаптическую щель.
à Узнавание. Предшествующий слиянию синаптических пузырьков и плазмолеммы процесс узнавания синаптическим пузырьком пресинаптической мембраны происходит при взаимодействии мембранных белков (синаптобревин, SNAP-25, синтаксин и другие).
à Влияние токсинов. Синтаксин, SNAP-25 и синаптобревин — мишени ботулинического токсина, необратимо подавляющего слияние синаптических пузырьков с пресинаптической мембраной. Мишень столбнячного токсина — синаптобревин.
· Активные зоны (рис. 6–3). Секреция нейромедиатора осуществляется в специализированных участках пресинаптического нервного окончания — активных зонах — участках утолщения пресинаптической мембраны. Активная зона состоит из «плотной полоски» на пресинаптической мембране и сгруппированных около неё синаптических пузырьков, потенциалозависимых кальциевых каналов, специальных белков экзоцитоза и элементов цитоскелета. Количество активных зон в нервно-мышечном синапсе достигает 30–40, в межнейронных синапсах — около десятка. Активные зоны расположены против скоплений рецепторов в постсинаптической мембране, что уменьшает задержку в передаче сигнала, связанную с диффузией нейромедиатора в синаптической щели.
Рис. 6–3. Активные зоны нервно-мышечного синапса расположены напротив постсинаптических складок — участков скоплений холинорецепторов. Пресинаптическая мембрана слева расщеплена на два листка.
· Жизненный цикл синаптических пузырьков (рис. 6–4). Синаптические везикулы образуются в теле нейрона в эндоплазматическом ретикулуме и комплексе Гольджи (1) и с аксонным транспортом поступают в нервные окончания (2). В нервном окончании мелкие синаптические пузырьки посредством активного транспорта заполняются медиатором (3) и передвигаются к пресинаптической мембране (4). Освобождение медиатора (5) может осуществляться посредством экзоцитоза с полным («классический» механизм) либо неполным (механизм «kiss and run») слиянием. Первый вид экзоцитоза сопровождается встраиванием мембраны везикулы в пресинаптическую, опорожнением пузырька, а затем посредством эндоцитоза образуются покрытые клатрином везикулы (6), которые затем проходят стадию эндосомы (7) и снова заполняются медиатором (3). Второй вид экзоцитоза характеризуется образованием временной поры, соединяющей полость пузырька с синаптической щелью. После выделения медиатора везикула не встраивается в пресинаптическую мембрану, а отпочковывается от неё (8) и повторно заполняется медиатором (3). Крупные синаптические везикулы заполняются медиатором в теле клетки (9), их экзоцитоз происходит в других участках пресинаптической мембраны, а эндоцитоз опорожнённых пузырьков отсутствует (10).
Рис. 6–4. Образование, транспорт и экзоцитоз синаптических пузырьков.
Синаптическая щель — промежуток между пре- и постсинаптическими мембранами шириной 20–35 нм. В синаптическую щель из синаптических пузырьков выделяются молекулы нейромедиатора и путём диффузии достигают постсинаптической мембраны. В синаптической щели находятся ферменты, расщепляющие молекулы нейромедиатора (например, ацетилхолинэстераза, гидролизующая ацетилхолин), а в пресинаптическую мембрану вмонтированы переносчики, осуществляющие перенос нейромедиаторов–аминокислот и биогенных аминов (например, глутамата, аспартата, норадреналина) в пресинаптическую терминаль.
Таким образом, удаление нейромедиатора из синаптической щели происходит двояко: инактивация ферментом или захват пресинаптической терминалью.
· Инактивация нейромедиатора. Кратковременность взаимодействия нейромедиатора с рецептором достигается разрушением нейромедиатора специальными ферментами (например, ацетилхолина — ацетилхолинэстеразой).
· Захват нейромедиатора. В большинстве синапсов передача сигналов прекращается вследствие быстрого захвата нейромедиатора пресинаптической терминалью.
· Транспортёры. Захват норадреналина осуществляют специфические Na+- и Cl–-транспортирующие белки (например, норадреналин–транспортирующий белок 1) — мишени трициклических антидепрессантов (например, дезипрамин и имипрамин). Система захвата биогенных аминов — точка приложения антидепрессантов и таких препаратов, как кокаин и амфетамины. Дефекты транспортёров норадреналина и серотонина — кандидаты на роль первопричины при психиатрических расстройствах, таких как маниакально-депрессивные состояния.
Постсинаптическая часть
В постсинаптической мембране находятся рецепторы, чувствительные к нейромедиатору. Взаимодействие нейромедиатора с рецептором приводит к изменению МП постсинаптической мембраны. В зависимости от характера возникающего постсинаптического потенциала (деполяризация или гиперполяризация) различают синапсы возбуждающие и тормозные.
· Возбуждающие синапсы.
Материал этого раздела см. в книге.
· Тормозные синапсы. При гиперполяризации возбудимость мембраны уменьшается, и ПД не генерируются.
Характер электрического ответа постсинаптической стороны и дальнейший физиологический эффект определяются свойствами рецепторов. С точки зрения механизма открытия ионных каналов и последующей де- или гиперполяризации (рис. 6–6) постсинаптические рецепторы подразделяют на ионотропные (от «ион») и метаботропные (от «метаболизм»).
· Ионотропные рецепторы сами по себе являются ионными каналами. Классический пример — н‑холинорецепторы (рис. 6–6, слева).
· Метаботропные рецепторы связаны с ферментами (аденилатциклаза или фосфолипаза C) через G‑белок. Классический пример — м‑холинорецепторы (рис. 6–6, справа).
Рис. 6–6. Ионотропные и метаботропные рецепторы в холинергических синапсах [2]
· Постсинаптические плотности. Область, расположенная с цитоплазматической стороны постсинаптической мембраны, в электронном микроскопе выглядит как зернистая плотная полоска, содержащая множество белков. К ним относятся рецепторы нейромедиаторов, протеинкиназы, структурные и цитоскелетные белки, а также белки, осуществляющие эндоцитоз и гликолиз.
· Дендритные шипики — характерная особенность 90% возбуждающих синапсов в ЦНС. Эти мелкие (менее 1 мкм длиной) удлинённые структуры, выступающие над поверхностью дендритов и имеющие постсинаптические плотности. Их функция точно не установлена; возможно, они увеличивают поверхность постсинаптической стороны или являются резервуаром для Ca2+.
Синапсы в нейронных сетях
Выше была рассмотрена физиология единичного синапса — важного элемента взаимодействия между нейронами, но в условиях целостного организма основная задача нервной системы — передача и переработка информации — не может быть сведена к работе отдельных синапсов. Напротив, функции нервной системы выполняются только при условии взаимодействия посредством синапсов множества нервных клеток — нейронных цепочек и сетей. При этом в нейронных сетях проявляются такие важные свойства как торможение, утомление, суммация, окклюзия, облегчение, депрессия и потенциация.
Пластичность синапсов
В ходе функционирования синапсы подвергаются функциональным и морфологическим перестройкам. Этот процесс назван синаптической пластичностью. Наиболее ярко такие изменения проявляются при высокочастотной, или тетанической активности, являющейся естественным условием функционирования синапсов in vivo. Например, частота импульсации вставочных нейронов в ЦНС достигает 1000 Гц. Пластичность (рис. 6–10) может проявляться либо в увеличении (облегчении, потенциации), либо уменьшении (депрессии) эффективности синаптической передачи. Выделяют кратковременные (длятся секунды и минуты) и долговременные (длятся часы, месяцы, годы) формы синаптической пластичности. Последние интересны тем, что они имеют отношение к процессам научения и памяти.
Рис. 6–10. Формы синаптической пластичности
Кратковременные формы синаптической пластичности. К ним относятся облегчение, потенциация, депрессия и привыкание.
· Облегчение. В процессе активности в синапсах с исходно низким уровнем секреции нередко происходит увеличение амплитуды постсинаптического потенциала (ПСП). Этот процесс — облегчение — имеет пресинаптическую природу и объясняется теорией «остаточного кальция». Согласно этой теории, в процессе высокочастотной активности в пресинаптической терминали наблюдается повышение концентрации Са2+, вследствие чего происходит увеличение вероятности освобождения квантов нейромедиатора.
· Потенциация, посттетаническая потенциация (сенситизация). Увеличение ПСП при высокочастотной активности может иметь и постсинаптическую природу. Такой вид пластичности связан с повышением чувствительности постсинаптических рецепторов к нейромедиатору и называется потенциацией. Величина ПСП может некоторое время (секунды и минуты) оставаться повышенной и после окончания тетанической активности. Это посттетаническая потенциация (в ЦНС — сенситизация).
· Депрессия и привыкание (габитуация). В синапсах с исходно высоким уровнем секреции высокочастотная активность может приводить к уменьшению величины ПСП. Этот процесс — депрессия — связан преимущественно с истощением запаса нейромедиатора в пресинаптическом нервном окончании. Депрессия является одним из механизмов привыкания (габитуации).
Справочный материал по Физиологии.