Регуляция скорости роста микроорганизмов. последовательность событий деления клетки

Собственно под ростом бактерий обычно подразумевают координированную репликацию всех компонентов бактерий. Поскольку деление бактериальной клетки приводит к образованию двух особей, то их число растет в геометрической прогрессии: 20-21-22-23-..2n. Регуляторное действие на рост бактерий оказывают качество питательной среды и условия выращивания. Рост популяции клеток в ограниченном жизненном пространстве (периодическая культура) может быть разделён по меньшей мере на четыре фазы. После внесения в среду бактерии адаптируются к её условиям и размножаются сравнительно медленно (лаг-фаза). Затем наступает фаза экспоненциального роста (экспоненциальная фаза). Далее среда истощается, в ней аккумулируются токсические продукты метаболизма, что проявляется снижением темпов размножения и прекращением увеличения числа клеток (стационарная фаза). Таким образом, рост в периодической культуре подчиняется закономерностям, действительным не только для одноклеточных, но и для многоклеточных организмов. В последующем бактериальная культура может погибнуть либо значительно сократиться (фаза отмирания). Спорообразующие виды переходят в стадию споруляции, у споронеобразующих видов возможно образование анабиотических форм. В некоторых случаях дополнительно выделяют фазу ускорения роста (начало экспоненциальной фазы) и фазу замедления роста (переход к стационарной фазе).

Процесс клеточного деления у прокариот включает следующие события в определенной очередности:

1) накопление «критической» клеточной массы;

2) репликация ДНК генома;

3) построение новой клеточной оболочки;

4) построение клеточной перегородки;

5) расхождение дочерних клеток.

Некоторые из этих событий протекают одновременно, другие строго последовательно или вообще могут отсутствовать.

Регуляция клеточного деления складывается из регуляции каждого из этих событий и организации их взаимодействия, при котором в клеточном делении устанавливается последовательность процессов и вырабатываются сигналы для инициации следующего по порядку процесса.

65. Характеристики процесса репликации ДНК:

Реплика́ция ДНК — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15—20 различных белков, называемый реплисомой.

Репликация проходит в три этапа:

1.инициация репликации

2.элонгация

3.терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации. В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон. Репликон — это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта. Геномы бактерий, как правило, представляют собой один репликон, это значит, что репликация всего генома является следствием всего одного акта инициации репликации. Геномы эукариот (а также их отдельные хромосомы) состоят из большого числа самостоятельных репликонов, это значительно сокращает суммарное время репликации отдельной хромосомы. Молекулярные механизмы, которые контролируют количество актов инициации репликации в каждом сайте за один цикл деления клетки, называются контролем копийности. В бактериальных клетках помимо хромосомной ДНК часто содержатся плазмиды, которые представляют собой отдельные репликоны. У плазмид существуют свои механизмы контроля копийности: они могут обеспечивать синтез как всего одной копии плазмиды за клеточный цикл, так и тысяч копий.

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка — место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок — участок хромосомы, где ДНК уже реплицирована, окружённый более протяжёнными участками нереплицированной ДНК.

В репликационной вилке ДНК копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза. Репликационная вилка движется со скоростью порядка 100 000 пар нуклеотидов в минуту у прокариот и 500—5000 — у эукариот.

Характеристики процесса репликации ДНК:

1. матричный — последовательность синтезируемой цепи ДНК однозначно определяется

2. последовательностью материнской цепи в соответствии с принципом комплементарности;

3. полуконсервативный — одна цепь молекулы ДНК, образовавшейся в результате репликации, является вновь синтезированной, а вторая — материнской;

4. идёт в направлении от 5’-конца новой молекулы к 3’-концу;

5. полунепрерывный — одна из цепей ДНК синтезируется непрерывно, а вторая — в виде набора отдельных коротких фрагментов (фрагментов Оказаки);

6. начинается с определённых участков ДНК, которые называются сайтами инициации репликации

66. Удвоение бактериальной хромосомы (нуклеотида). Амплификация генов и ее роль в биотехнологическом процессе.

Клетки бактерий не имеют ядра, ограниченного ядерной оболочкой. Наследственный материал представлен замкнутой в кольцо двойной спиралью ДНК. Она не образует комплексов с белками и лишь условно может быть названа хромосомой. Все прокариоты гаплоидные, то есть содержат одну копию генов. ДНК-содержащую зону клетки называют нуклеоидом. Это эволюционно более примитивная форма организации ядерного вещества. Помимо ядерной оболочки в прокариотических клетках отсутствуют ядрышки, а также мембранные органоиды.

В клетках бактерий цитоплазматическая мембрана способна впячиваться внутрь цитоплазмы и образовывать мезосомы. У одних бактерий они выявляются чаще, у других реже, форма и размеры этих образований также чрезвычайно разнообразны. Наиболее обычным и легко обнаруживаемым типом мезосом являются кольцевые впячивания ЦПМ, расположенные в зоне образования клеточной перегородки. По мнению некоторых авторов, только их и следует называть истинными мезосомами. Для мезосомных образований, связанных с бактериальной хромосомой, используют термин нуклеоидосома.

Бесполое размножение бактерий осуществляется путем бинарного деления, которому предшествует репликация ДНК. Удвоение начинается с определенного участка этой молекулы, так называемой точки инициации. При этом одна из цепей ДНК остается прикрепленной к нуклеоидосоме, а другая, «раздвигаясь», постепенно от нее. Фермент ДНК-полимераза на каждой из них достраивает комплементарную полинуклеотидную цепь. Таким образом, возникают две молекулы ДНК, каждая из которых содержит одну «старую» цепь и одну вновь синтезированную цепь.

Завершение репликации служит сигналом для начала формирования перегородки между дочерними клетками. При этом клеточная мембрана как бы «врастает» между образовавшимся молекулами ДНК, разделяя их. Предполагает, что мезосомы каким-то образом участвуют в синтезе веществ клеточной стенки.

Одновременно с ростом клеточной перегородки идет процесс ее расслаивания в центре, что обеспечивает каждую дочернюю клетку новой оболочкой. Цепочки бактерий образуются в том случае, если перегородка разделяется не полностью.

Амплификация— процесс образования дополнительных копий участков хромосомной ДНК, как правило, содержащих определённые гены либо сегменты структурного гетерохроматина. Амплификация может быть ответом клеток на селективное. Амплификация — один из механизмов активации онкогенов в процессе развития опухоли, например, онкогена N-myc при развитии нейробластомы. Также амплификация — накопление копий определенной нуклеотидной последовательности во время ПЦР — полимеразной цепной реакции.

Процесс удвоения: выделенную молекулу ДНК нагревают, затем она распадается на две нити. Добавляют праймеры. Затем смесь ДНК и праймеров охлаждают. При этом праймеры, при наличии в смеси ДНК искомо­го гена, связываются с его комплементарными участками. Далее к смеси ДНК и праймера добавляют ДНК-полимеразу и нуклеотиды. Устанавливают температуру, оптимальную для функционирования ДНК-полимеразы (37 °С). В этих условиях, в случае комплементарности ДНК гена и праймера, происходит присоединение нуклеотидов к З'-концам праймеров, в резуль­тате чего синтезируются две копии гена. После этого цикл повторяется снова, при этом ко­личество ДНК гена будет увеличиваться каждый раз вдвое. Проводят реакцию в специальных приборах — амплификаторах.

Распространенным способом повышения выхода полезного продукта является амплификация — увеличение числа копий генов. Такие биотехнологически ценные продукты, как антибиотики, аминокислоты, витамины, характеризуются в большинстве случаев длинными и сложными путями биосинтеза, который управляется десятками различных генов. Выделение этих генов и их клонирование с целью амплификации часто представляет собой трудновыполнимую задачу. В ряде случаев, однако, синтез антибиотиков, например пептидной природы, идет в мультиферментных комплексах, кодируемых одним опероном, который может быть сравнительно легко встроен в подходящий вектор и клонирован. Если же гены не скомпонованы в единый оперон и разбросаны по геному, повышение выхода продукта достигается клонированием генов, соответствующих узким местам биосинтеза. Амплификация этих генов стимулирует протекание реакций, лимитирующих скорость всего процесса.

67. Расхождение бактериальных хромосом и образование перегородки.

В начале синтеза ДНК, который начинается с точки репликации, обе растущие молекулы ДНК изначально остаются связанными с плазматической мембраной. Одновременно с синтезом ДНК происходит процесс снятия сверхспирализации как старых, так и реплицирующихся петлевых доменов за счет целого ряда ферментов (топоизомеразы, гиразы, лигазы и др), что приводит к физическому обособлению двух дочерних (или сестринских) хромосом-нуклеоидов, которые еще находятся в тесном контакте друг с другом. После такой сегрегации нуклеоидов происходит их расхождение от центра клетки, от места их бывшего расположения. Причем это расхождение очень точное: на четверть длины клетки в двух противоположных направлениях. В результате этого в клетке располагаются два новых нуклеоида. Каков механизм этого расхождения? Делались предположения, что деление бактериальных клеток аналогично митозу эукариот, однако данных в пользу этого предположения долгое время не появлялось.

Новые сведения о механизмах деления бактериальных клеток были получены при изучении мутантов, в которых происходили нарушения клеточного деления.

Было обнаружено, что в процессе расхождения нуклеоидов принимают участие несколько групп специальных белков. Один из них, белок Muk В, представляет собой гигантский гомодимер, состоящий из центрального спирального участка, и концевых глобулярных участков, напоминающий по структуре нитевидные белки эукариот (цепь миозина II, кинезина). На N-конце Muk В связывается с ГТФ и АТФ, а на С-конце – с молекулой ДНК. Эти свойства Muk В дают основания считать его моторным белком, участвующим в расхождении нуклеоидов. Мутации этого белка приводят к нарушениям расхождения нуклеоидов: в мутантной популяции появляется большое количество безъядерных клеток.

Кроме белка Muk В в расхождении нуклеоидов, по-видимому, участвуют пучки фибрилл, содержащих белок Caf A, который может связываться с тяжелыми цепями миозина, подобно актину .

Формирование перетяжки: завершающим этапом деления прокариотической клетки является формирование перетяжки и конечное разделение двух новых клеток. Образование перетяжки затрагивает все компоненты клеточной оболочки (внутреннюю мембрану, слой пептидогликана и внешнюю мембрану). Есть основания полагать, что за инвагинацию внутренней мембраны отвечает Z-кольцо, однако как именно оно передаёт напряжение на мембрану, пока не известно. Параллельно с с этим процессом ферменты септального кольца синтезируют (или модифицируют особым образом предсуществующий) пептидогликан септы[2][17]. После формирования септы в работу вступают пептидогликангидролазы, которые отделяют будущие клетки друг от друга. Завершается процесс деления инвагинацией и обособлением внешних мембран клеток.

Наши рекомендации