Прямоугольные сечения с симметричной арматурой
Пример 22 . Дано:колонна среднего этажа рамного каркаса с сечением размерами b = 400 мм, h = 500 мм; а = а' = 40 мм; бетон класса В25 (Е b = 300000 МПа, Rb = 14,5 МПа); арматура класса А400 ( Rs = Rsc = 355 МПа); площадь ее сечения А s = А' s = 1232 мм2 (2 Æ 28); продольная сила и изгибающие моменты в опорном сечении: от вертикальных нагрузок: всех Nv = 650 кН, Mv = 140 кН м, постоянных и длительных Nl = 620 кН, М l = 130 кНм.; от ветровых нагрузокNh = 50 кН, Mh = 73 кН м; высота этажа l = 6 м.
Требуется проверить прочность опорного сечения колонны.
Расчет. h о = 500 - 40 = 460 мм. Расчет ведем с учетом влияния прогиба согласно п.3.53. Поскольку рассматриваемое сечение опорное и колонна у этой опоры имеет податливую заделку, принимаем ηv = 1,0. Для вычисления коэффициента ηh принимаем согласно п. 3.55,б расчетную длину колонны равной lo = 1,2·6 = 7,2 м. При этом lo / h=7,2/0,5 = 14,4 > 4, т.е. учет прогиба обязателен.
Усилия от всех нагрузок равны М = Mv + Mh = 140 + 73 = 213 кН·м, N = Nv + Nh = 650 + 50 = 700 кН. При этом, т.е. согласно п.3.49 значение момента М не корректируем.
Определяем моменты М1и М1 lотносительно растянутой арматуры соответственно от всех нагрузок и от постоянных и длительных нагрузок
Тогда φ l = 1 +М1 l /М 1= 1 + 260,2/360 = 1,72.
Так как , принимаем δ e = 0,608.
По формуле ( 3.89) определим жесткость D
Отсюда
Расчетный момент с учетом прогиба определяем по формуле( 3.85), принимая М t = 0,0.
М = M v ηv + Mh ηh = 140 + 73·1,156 = 224,4 кНм.
Проверяем прочность сечения согласно п.3.56.
(см. табл. 3.2).
Следовательно, х = anh о = 0,262·460 = 120,5 мм.
т.е. прочность сечения обеспечена.
Пример 23.Дано :сечение колонны среднего этажа рамного каркаса размером b = 400 мм, h = 400 мм; а = а' = 50 мм; бетон класса В25 ( Rb = 14,5 МПа, Е b = 3·105 МПа); арматура симметричная класса А400 ( Rs = Rsc = 355 МПа); продольная сила и изгибающие моменты в опорном сечении: от вертикальных нагрузок: всех Nv = 900 кН, Mv = 160 кНм; постоянных и длительных Nl = 800 кН, Ml = 150 кНм; от ветровых нагрузок Nh = 100 кНм, Mh = 110 кНм; высота этажа 4,8 м.
Требуется определить площадь сечения арматуры.
Расчет. h o = 400 - 50 = 350 мм. В соответствии с п.3.53 принимаем ηv = 1,0, а согласно п.3.55,б расчетную длину колонны принимаем равной lo = 1,2·4,8 = 5,76 м.
При этом l 0 / h = 5,76/0,4 = 14,4 > 4, т.е. учитываем прогиб колонны.
Усилия от всех нагрузок равны М = Mv + Mh = 160 + 110 = 270 кНм; N = Nv + Nh = 900 + 100 = 1000 кН. При этом , т.е. значение М не корректируем.
Согласно п.3.54 определяем коэффициент ηh .
φ l = 1 +М1 l /М 1= 1 + 270 /420 = 1,64.
Так как , принимаем δ e = 0,675.
В первом приближении принимаем μ = 0,01,
По формуле ( 3.89) определяем жесткость D :
Отсюда
М = M v ηv + Mh ηh = 160·1,0 + 110·1,436 = 318 кН·м.
Необходимую площадь сечения арматуры определим согласно п.3.57. Для этого вычислим значения:
Из табл. 3.2 находим ξR = 0,531. Так как а n < ξR , А s = А' s определим по формуле ( 3.93)
Откуда
Поскольку полученное армирование превышает армирование, принятое при определении D , а момент М h = 110 кНм составляет значительную долю полного момента М = 270 кНм, значение As = 1918 мм2 определено с некоторым «запасом», который можно уменьшить, повторив расчет, принимая в формуле ( 3.89) значение μ = 0,024:
М =160·1,0 + 110·1,228 = 295 кН·м.
Принимаем значения А s = А' s =1847 мм2 (3 Æ 28), что близко к значению А s использованному при вычислении D .
Пример 24.Дано :колонна нижнего этажа многоэтажного рамного каркаса с сечением размерами b = 400 мм, h = 500 мм; а = а' = 50 мм; бетон класса В25 (Е b = 3·104 МПа, Rb = 14,5 МПа); арматура класса А400 ( Rs = Rsc = 355 МПа) с площадью сечения As = А' s = 1847 мм2 (3 Æ 28); продольные силы и изгибающие моменты в нижнем опорном сечении: от вертикальных нагрузок: всех Nv = 2200 кН, Mv = 250 кНм, от постоянных и длительных нагрузок Nl = 2100 кН, Ml = 230 кНм; от ветровых нагрузок Nh = 0,0, Mh = 53 кНм; высота этажа 6 м.
Требуется проверить прочность нижнего опорного сечения колонны.
Расчет. ho = h - а = 500 - 50 = 450 мм. Расчет ведем с учетом прогиба колонны согласно п.3.53. Поскольку у рассматриваемого сечения колонна жестко заделана в фундамент, коэффициент ηv определяем по формуле ( 3.86), принимая расчетную длину колонны согласно п. 3.55 а равной lo = 0,7·6 = 4,2 м.
Жесткость D при определении как коэффициента ηv так и коэффициента ηh вычисляем по формуле ( 3.89) с учетом всех нагрузок. Усилия от всех нагрузок равны М = Mv + М h = 250 + 53 = 303 кН, N = Nv = 2200 кН. При этом
φ l = 1 +М1 l /М 1= 1 + 650 /743 = 1,875.
Так как , принимаем .
Отсюда
Аналогично определим коэффициент ηh принимая расчетную длинусогласно п.3.55,б равной lo = 1,0·6 = 6 м. Тогда
Расчетный момент с учетом прогиба равен
М = M v ηv + Mh ηh = 250·1,115 + 53·1,267 = 345,9 кНм.
Проверяем прочность сечения согласно п.3.56.
(см. табл. 3.2).
Следовательно, высоту сжатой зону х определяем с помощьюформулы ( 3.92). Для этого вычисляем
т.е. прочность сечения обеспечена.
Пример 25 . Дано:колонна нижнего этажа связевого каркаса с сечением размерами 400x400 мм; а = а' = 50 им; бетон класса В40 (Е b = 36· 103 МПа, Rb = 22 МПа); продольная арматура класса А500 ( Rs = 435 МПа, Rsc = 400 МПа); продольные силы и изгибающие моменты в нижнем опорном сечении от вертикальных нагрузок Nv = 6000 кН, М v = 120 кНм, от постоянных и длительных нагрузок Nl = 5800 кН, Ml = 100 кНм; усилиями от ветровой нагрузки пренебрегаем; высота этажа l = 3,6 м.
Требуется определить площадь сечения продольной арматуры.
Расчет. h о = 400 - 50 = 350 мм. Расчет ведем с учетом прогиба колонны согласно п.3.53. Поскольку у рассматриваемого сечения колонна жестко заделана в фундамент, коэффициент ηv определяем по формуле ( 3.85), принимая расчетную длину колонны согласно п.3.55,а, равной lo = 0,7·3,6 = 2,52 м.
При этом lo / h = 2,52/0,4 = 6,3 > 4, т.е. учет прогиба обязателен. Определяем по формуле ( 3.89) жесткость D ,учитывая все нагрузки, т.е. М = М v = 120 кНм и N = Nv = 6000 кН. Эксцентриситет , следовательно, момент не корректируем.
φ l = 1 +М1 l /М 1= 1 + 970 /1020 = 1,951.
Так как , принимаем .
В первом приближении принимаем μ = 0,02, тогда
Отсюда
М = M v ηv = 120·1,2 = 144 кНм .
Необходимую площадь сечения арматуры определим согласно п.3.57.Для этого вычислим значения:
Из табл. 3.2 находим ξR = 0,493. Так как an > ξR , значение As = А' s определяем по формуле ( 3.94). При этом, поскольку здесь определяющим прочность является сжатая арматура, принимаем Rs = Rsc = 400 МПа. Значение ξопределяем по формуле ( 3.92), вычисляя as по формуле ( 3.95) при
т.е. при ξ 1 = 1,0
Принимаем А s = А' s = 4539 мм2 (2 Æ 40 + 2 Æ 36).
Пример 26.Дано :колонна среднего этажа связевого каркаса с сечением размерами 400x400 мм; бетон класса В25 (Rb = 14,5 МПа), продольная арматура класса А400 ( Rs = Rsc = 355 МПа): продольные силы и изгибающие моменты от вертикальных нагрузок в опорном сечении: от всех нагрузок Nv = 2200 кН, Mv =20 кН м, от постоянных и длительных нагрузок Nl = 1980 кН, М l = 0,0; высота этажа Н = 6 м.
Требуется определить площадь сечения продольной арматуры.
Расчет. Поскольку колонна закреплена с обоих концов шарнирно опертыми ригелями, принимаем согласно п.3.59,арасчетную длину колонны равной lo = Н = 6 м. Тогда lo / h = 6/0,4 = 15 > 4, т.е. учет прогиба колонны обязателен.
Эксцентриситет продольной силы от всех нагрузок равен . Поскольку , согласно п.3.49 случайный эксцентриситет принимаем равным еа= 13,3 мм > е o . Следовательно, расчет колонны производим на действие продольной силы с эксцентриситетом е o = еа согласно п.3.58.
Из табл. 3.5 и 3.6 при Nl / N = 1980/2200 = 0,9, предполагая отсутствие промежуточных стержней при а = а' < 0,15 hнаходим φ b = 0,804 и φ sb = 0,867.
Принимая в первом приближении φ = φ sb = 0,867, из условия ( 3.97) находим
Отсюда
Поскольку а s < 0,5, уточняем значение φ, вычислив его по формуле ( 3.98):
φ = φ b + 2 (φ sb - φ b )as = 0,804 + 2(0,867 - 0,804)0,094 = 0,816.
Аналогично определяем
Полученное значение RsAs , tot существенно превышает принятое в первом приближении, поэтому еще раз уточняем значение φ :
φ = 0,804 + 2(0,867-0,804)0,162 = 0,824;
Поскольку полученное значение RsAs , tot близко к принятому во втором приближении, суммарную площадь сечения арматуры принимаем равной
Окончательно принимаем As , tot = 1018 мм2 (4 Æ 18).