Магнитные порошковые материалы
Различают магнитомягкие и магнитотвердые материалы.
Магнитомягкие – это материалы с большой магнитной проницаемостью и малой коэрцитивной силой, быстро намагничиваются и быстро теряют магнитные свойства при снятии магнитного поля. Основной магнитомягкий материал – чистое железо и его сплавы с никелем и кобальтом. Для повышения электросопротивления легируют кремнием, алюминием. Для улучшения прессуемости сплавов вводят до 1 % пластмассы, которая полностью испаряется при спекании. Пористость материалов должна быть минимальной.
Отдельно выделяется группа магнитодиэлектриков – это частицы магнитомягкого материала, разделенные тонким слоем диэлектрика – жидкого стекла или синтетической смолы. Таким материалам присущи высокое электросопротивление и минимальные потери на вихревые токи и на перемагничивание. Изготавливаются в результате смешивания, прессования и спекания, особенностью является то, что при нагреве частицы магнитного материала остаются изолированными и не меняют формы. За основу используют чистое железо, альсиферы.
Магнитотвердые материалы (постоянные магниты) – материалы с малой магнитной проницаемостью и большой коэрцитивной силой.
Магниты массой до 100 г изготавливают из порошковых смесей такого же состава, как литые магниты: железо – алюминий – никель (альни), железо – алюминий – никель – кобальт (альнико). После спекания этих сплавов обязательна термическая обработка с наложением магнитного поля.
Высокие магнитные свойства имеют магниты из сплавов редкоземельных металлов (церий, самарий, празеодим) с кобальтом.
Металлические стекла
Металлические стекла (аморфные сплавы, стекловидные металлы, метглассы) — металлические сплавы в стеклообразном состоянии, образующиеся при сверхбыстром охлаждении металлического расплава, когда быстрым охлаждением предотвращена кристаллизация (скорость охлаждения < 106 К/с).
Металлические стекла — метастабильные системы, которые кристаллизуются при нагревании до температуры ~ 1/2 tпл. Нагрев, когда подвижность атомов возрастает, постепенно приводит аморфный сплав через ряд метастабильных состояний в стабильное кристаллическое состояние. Многие металлические стекла испытывают структурную релаксацию уже при температуре чуть выше комнатной. Наложение деформирующего напряжения усиливает диффузионную подвижность и связанную с ней структурную перестройку сплавов.
Состав металлических стекол чаще всего выражается формулой М80Х20, где М — переходные (Cr, Mn, Fe, Co, Ni и др.) или благородные металлы, а X — поливалентные неметаллы (В, С, N, Si, P, Ge и др.), являющиеся стеклообразующими элементами.
Металлические стекла отличаются от кристаллических сплавов отсутствием таких дефектов структуры, как вакансии, дислокации, границы зерен, и уникальной химической однородностью: отсутствует ликвация, весь сплав однофазен.
Особенности строения металлических стекол обусловливают отсутствие характерной для кристаллов анизотропии свойств, высокую прочность, коррозионную стойкость и магнитную проницаемость, малые потери на перемагничивание.
Физико-химические свойства металлических стекол значительно отличаются от свойств литых сплавов. Характерными особенностями потребительских свойств металлических стекол являются высокая прочность в сочетании с большой пластичностью и высокой коррозионной стойкостью. Некоторые металлические стекла — ферромагнетики с очень низкой коэрцитивной силой и высокой магнитной проницаемостью (например, Fe80B20), а для других характерно очень слабое поглощение звука (сплавы редкоземельных металлов с переходными металлами). Наиболее широкое применение металлические стекла нашли благодаря магнитным и коррозионным свойствам.
Магнитно-мягкие металлические стекла изготавливают на основе Fe, Co, Ni с добавками 15...20 % аморфообразующих элементов B, С, Si, P. Например, Fe81Si3, 5B13, 5C2 имеют высокое значение магнитной индукции (1,6 Тл) и низкое значение коэрцитивной силы (32...35 мА/см). Аморфный сплав Co66Fe4(Mo, Si, В)30 имеет сравнительно небольшое значение магнитной индукции (0,55 Тл), но высокие механические свойства (900... 1000 HV).
Высоким сопротивлением коррозии обладают только стабильные аморфные сплавы. Так, для изготовления коррозионно-стойккх деталей используют металлические стекла на основе железа и никеля, содержащие не менее 3...5 % хрома и некоторые другие элементы. Критическая концентрация хрома, обеспечивающая стабильность аморфного сплава, определяется соотношением между легирующими элементами сплава и активностью коррозионной среды. Сопротивление металлических стекол коррозии снижают процессы, усиливающие химическую неоднородность, а именно:
· появление флуктуации химического состава; разделение исходной аморфной фазы на две другие аморфные фазы или фазы с другим химическим составом;
· переход аморфной фазы в двух- или многофазную смесь кристаллов разного химического состава;
· образование кристаллической фазы того же химического состава, что и окружающая матрица.