Принципы проектирования системы отопления
Гидравлический расчет системы отопления на основе расчетного циркуляционного давления представляет собой отдельный этап проектирования. Этот расчет выполняется после определения тепловых нагрузок, выбора и конструирования системы, рассмотренных в предыдущих главах. Таким образом, проектирование системы можно разделить на четыре этапа, характерные не только для систем водяного, но и для систем парового и воздушного отопления.
Исходными данными для проектирования системы отопления служат: назначение, планировка и строительные конструкции здания; положение здания на местности; климатологические показатели для местности; источник теплоснабжения; температура и влажность воздуха в основных помещениях.
Расчет теплового режима. После проведения теплотехнического расчета наружных ограждений, расчета теплового режима в помещениях определяются теплопотери, подлежащие возмещению при помощи отопительных приборов. Расчеты выполняются с использованием сведений, изложенных в главах I и II.
Выбор системы. На этом этапе проектирования выбираются расчетная температура (параметры) воды, вид отопительных приборов и конструкция системы отопления с технико-экономическим обоснованием принятого решения в необходимых случаях. На основании сведений, приведенных в главах I, III, IV, можно установить следующие положения для выбора конструкции системы отопления.
В многоэтажных зданиях, имеющих более трех этажей, проектируются преимущественно вертикальные однотрубные системы отопления. В бесчердачных зданиях средней этажности используются однотрубные системы с нижней прокладкой обеих магистралей. В зданиях повышенной этажности применяются однотрубные системы с нижней разводкой подающей магистрали для создания «опрокинутой» циркуляции воды в стояках.
В зданиях массового строительства предпочтение отдается однотрубному стояку унифицированной конструкции, имеющему один диаметр и повторяющуюся длину его элементов.
зданиях ограниченного объема, имеющих разноэтажные части, устраиваются двухтрубные системы с нижней прокладкой обеих магистралей. В одноэтажных зданиях, в двух-трехэтажных пристройках к главному зданию используются в основном горизонтальные однотрубные системы, могут применяться и двухтрубные системы с верхней разводкой подающей магистрали.
Чем выше здание, тем меньше должно быть гидравлическое сопротивление узла каждого отопительного прибора вертикального однотрубного стояка, и, наоборот, тем больше должно быть сопротивление каждого приборного узла двухтрубного стояка или горизонтальной однотрубной ветви.
Конструирование системы. Размещают отопительные приборы и стояки на планах каждого этажа, отопительное оборудование в тепловом пункте здания, расширительный бак (если он имеется) и магистрали системы.
Магистрали предусматриваются раздельными для отопительных приборов постоянного действия, для воздухонагревателей лестничных клеток и воздушно-тепловых завес, для отопительных приборов дежурного или периодического действия. Рекомендуется при трассировке магистра- лей предусматривать возможность пофасадного регулирования действйя системы отопления.
При размещении магистралей принимаются также решения по величине и направлению уклона, по компенсации удлинения и тепловой изоляции труб, по организации движения, сбора И удаления воздуха, по спуску и наполнению водой системы и стояков, по выбору и размещению арматуры.
Этот этап проектирования завершается конструированием схемы труб и приборов системы отопления, основного чертежа, по которому можно выявить циркуляционные кольца системы, разделить их на участки и нанести тепловые нагрузки.
Термин «участок», встречающийся ранее, означает отрезок трубы, по которому протекает при определенной температуре неизменное количество воды.
Тепловая нагрузка отопительного прибора определяет тепловой поток, подводимый в расчетных условиях к прибору теплоносителем — водой. Этот тепловой поток QT по уравнению (III.1) принимается равным тепловому потоку Qnp, передаваемому прибором в помещение. Точнее, при установке отопительного прибора у наружной стены под окном QT> >Qnp приблизительно на 5%. Различие в тепловых потоках обусловлено увеличением теплопотери через наружную стену вследствие повышения температуры ее внутренней поверхности, непосредственно облучаемой прибором.
Тепловая нагрузка участка определяет тепловой поток, передающийся в помещения от воды, протекающей по участку. Этот тепловой поток равняется сумме тепловых нагрузок отопительных приборов. Для участка подающего теплопровода он выражает количество тепла, подлежащее передаче от горячей воды на ее дальнейшем пути, для участка обратного теплопровода — количество тепла, отведенное от охлажденной воды. Тепловая нагрузка участка носит условный характер и в действительности выражает расход воды на участке — величину, необходимую для гидравлического расчета.
Например, если тепловая нагрузка участка обратного теплопровода равняется 7000 Вт (6000 ккал/ч), то это означает, что вода, протекающая по участку, передала в помещения тепловой поток в 7000 Вт (6000 ккал/ч). Если же при этом вода охладилась на 25°, то по участку протекает 240 кг/ч воды [согласно формуле (IV.2)].
Расчет системы состоит из гидравлического расчета и теплового расчета нагревательной поверхности труб и приборов .
Гидравлический и тепловой расчеты системы отопления взаимно связаны, и, строго говоря, требуется многократное повторение расчетов по методу итерации для выявления действительного расхода воды и необходимой площади нагревательной поверхности приборов. Поэтому наиболее точным является расчет системы на ЭЦВМ. При ручном счете расчет повторяется 1—2 раза, причем гидравлический и тепловой’расчеты выполняются в различной очередности.
В первом случае тепловой расчет отопительных приборов предшествует гидравлическому расчету. Это случай, когда длина греющих элементов отопительных приборов существенно влияет на гидравлическое сопротивление стояка. К таким приборам относятся конвекторы, панели и ребристые трубы, основанные на применении греющих труб dy 15 и 20 мм. Тогда до гидравлического расчета определяется предварительная длина труб приборов, а после уточнения расхода и температуры воды в стояках вносятся поправки в размеры приборов.
Окончательный тепловой расчет любых приборов может выполняться сразу (до гидравлического расчета) в двухтрубных системах при скрытой прокладке стояков и подводок к приборам.
Во втором случае, наоборот, гидравлический расчет предшествует тепловому расчету приборов. Это случай, когда длина приборов практически не отражается на гидравлическом сопротивлении стояка. К таким приборам относятся радиаторы, полые панели, ребристые и гладкие трубы с?у=50—100 мм. В результате гидравлического расчета определяются диаметр труб, расход и температура воды в стояках, а затем размер отопительных приборов с учетом теплопередачи труб в каждом помещении.
Гидравлический расчет системы отопления выполняется двумя способами: с равным и неравным (часто говорят с постоянным и переменным) перепадом температуры воды в стояках.
Расчет с равным перепадом температуры воды в стояках заключается в подборе диаметра труб по заданному расходу воды на всех участках системы, i
Расчет с неравным перепадом температуры воды в стояках заключается в определении расхода и температуры обратной воды в каждом стояке по заданному диаметру труб на всех участках системы.
2. Гидравлический расчет систем водяного отопления
Трубопроводы в систем отопления выполняют важную функцию распределения теплоносителя по отдельным отопительным приборам. Они являются теплопроводами, задача которых состоит в передаче определенного расчетного количества тепла каждому прибору.
Система отопления представляет собой сильно разветвленную и сложно закольцованную сеть теплопроводов, по каждому участку которой должно переноситься определенное количество тепла. Выполнение точного расчета такой сети является сложной гидравлической задачей, связанной с решением большого числа нелинейных уравнений. В инженерной практике эта задача решается методом подбора.
В водяных системах количество принесенного тепла теплоносителем зависит от его расхода и перепада температуры при охлаждении воды в приборе. Обычно при расчете задают общий для системы перепад температуры теплоносителя и стремятся к тому, чтобы этот перепад был выдержан в двухтрубных системах — для всех приборов и системы в целом; в отднотрубных системах — для всех стояков. При известном перепаде температуры теплоносителя по теплопроводам системы должен быть подведен определенный расчетом расход воды к каждому отопительному прибору.
При таком подходе выполнить гидравлический расчет сети теплопроводов системы отопления значит (с учетом располагаемого циркуляционного давления) так подобрать диаметры отдельных участков, чтобы по ним проходил расчетный расход теплоносителя. Расчет ведется подбором диаметров по имеющемуся сортаменту труб, поэтому он всегда связан с некоторой погрешностью. Для различных систем и отдельных элементов допускаются определенные невязки.
В отличие от рассмотренного выше метода в настоящее время нашел широкое распространение, применительно к расчету однотрубных систем отопления, метод с переменным перепадом температуры воды в стояках, предложенный А. И. Орловым в 1932 г. Принцип расчета заключается в том, что расходы воды в стояках не задаются заранее, а определяются в процессе гидравлического расчета исходя из полной увязки давлений во всех кольцах системы и принятых диаметров теплопроводов сети.
Перепад температуры теплоносителя в отдельных стояках при этом получается различным — переменным. Площадь теплоотдающей/ поверхности отопительных приборов находится по температуре и расходу воды, определенным гидравлическим расчетом.
Метод расчета с переменным перепадом температуры точнее отражает действительную картину работы системы, исключает необходимость монтажной регулировки, облегчает унификацию трубной заготовки, так как дает возможность избежать применения разнообразных сочетаний диаметров радиаторных узлов и составных стояков.
Этот метод получил распространение после того, как в 1936 г, Г, И. Фихман доказал возможность применения при расчете теплопроводов систем водяного отопления усредненных значений коэффициентов трения и ведения всего расчета по квадратичному закону. Наиболее детально этот метод разработан Е. А. Белинким.