Становление интенсивной технологии разработки новшеств

Мощным средством интенсификации любых разработок стало в последние десятилетия электронно-вычислительная техника. Первым ее вкладом в интенсивную технологию инновационного процесса на предприятии стала автоматизация информационного обеспечения. Создание информационно-справочных и информационно-поисковых систем, банков данных, баз знании и т.п. позволили резко увеличить полноту охвата имеющейся информации, целенаправленность ее поиска и использования.

В современных условиях интенсивного производства новых знаний процессы создания новых технических систем характеризуются возрастающей сложностью задач конструирования: растет число альтернатив выполнения отдельных подсистем, узлов, блоков, увеличивается список физических процессов, которые закладываются в основу их производства. С ростом числа альтернатив увеличивается и число осу­ществляемых и работоспособных комбинаций этих альтернатив. Все это ведет к необходимости адекватного информационного обеспечения проектных и конструкторских работ, невозможного, в наше время все возрастающего потока информации, без помощи ЭВМ.

Академик В.Н.Глушков отмечал, что "аспекты применения ЭВМ в изобретательстве практически бесчисленны" и следующим шагом в этом плане стало использование возможностей электронно-вычислительной техники не только в поиске оптимальных физических принципов действия (ФПД) будущих конструкций или технологий и технических решений (ТР), но и в открытии новых и более эффективных ФПД и ТР.

Например, один из разработанных в нашей стране методов автоматизированного синтеза технических решений позволяет получать путем комбинирования элементов и признаков известных технических решений новые, еще неизвестные ТР, обеспечивает в большой мере автоматическую оценку и сравнение вариантов ТР, автоматизирует описание синтезированных (выбранных) ТР на естественном языке или в виде графического эскиза.

В последнее время все большее значение приобретает человеко-машинные экспертные системы, позволяющие соединить опыт, знания и интуицию людей с возможностями электронно-вычислительной техники. Особенно перспективно применение таких систем в инновационном процессе, как правило, характеризующимся значительной неопределенностью сроков, необходимых ресурсов, ожидаемых результатов.

По мнению российских специалистов, в первую очередь нужны экспертные системы для отработки разрабатываемых объектов на испы­тательных стендах. Так, анализ инновационного процесса разработки ряда видов двигателей показал, что они создавались в течение 6-7 лет. Но при этом затраты времени и средств на отработку изделия составляли более 80 процентов общих затрат на проект, а полезное время самого процесса испытаний — всего 5-12 процентов.

Такой низкий КПД объясняется, с одной стороны, тем, что в связи со сложностью математического описания взаимосвязи физических процессов, происходящих в разрабатываемых объектах, ошибки в проектах сложных систем неизбежны; с другой — при проектировании не принято предусматривать возможность возникновения сбоев, ибо изначально предполагается, что объект будет удовлетворять всем установленным в задании требованиям.

Необходимо, однако, заметить, что не в ходе собственно проектирования, а лишь в процессе продолжительной экспериментальной обра­ботки и натурных испытаний можно обеспечить высокую надежность и качество создаваемых изделий. Экономия на разработке программы и системы испытаний приводит к тому, что теряется неизмеримо больше времени и средств на выяснение причин непредвиденных отказов и их устранение. Практика показывает, что на это уходит порой 90 процентов времени экспериментальной отладки новых изделий.

Использование экспертной системы, в которой параллельно с проектированием объекта готовится и оптимизируется программа его испытаний, позволяет еще на начальных стадиях проекта выявить слабые места в конструкции, которые могут быть исправлены до начала эксплуатации машин. С помощью этих систем в современной технике полнее учитывается ее взаимодействие с пользователями и внешней средой, осуществляется контроль и диагностика, без которых сложные машины считаются сегодня неконкурентоспособными.

Огромные возможности экспертных систем лучше всего раскрываются в их сочетании с другими функциональными блоками и разра­ботанными пакетами прикладных программ систем автоматизированного проектирования.

В США, например, уже есть новые средства программного обеспечения ЭВМ, позволяющие резко ускорить и повысить точность пред­варительных расчетов себестоимости готовящейся и выпускаемой продукт». Так, программы корпорация "Кодак" позволяют сократить на 75 процентов время составления сметы расходов по выпуску продукции. Как свидетельствует опыт отдельных компаний, при умелом ис­пользовании данных программ отклонения предварительных результатов от фактических показателей себестоимости не превышают 10 процентов. Специализированные системы автоматического проектирования (САПР), предназначенные исключительно для расчетов смет, способны оперировать большими базами, включающими данные о более чем 250 видах конструкционных материалов и 60 типах технологического оборудования.

С помощью некоторых моделей подобных комплексных систем оптимизируется выбор новых технологий, рассчитывается время выпуска партия изделий, определяется себестоимость партии я затраты времени на проверку качества выпускаемой продукции. Внедряются в практику и принципиально новые подходы к построению подобных программ, ориентированных на стадии конструкторско-технологической разработки изделия. Этими программами оснащаются экспертные системы, предназначенные для конструкторов и технологов.

Основной принцип, в соответствии с которым формируется база таких систем, состоит в том, что от 50 до 80 процентов будущей себесто­имости могут быть точно определены на этапе конструкторско-технологической разработки. Обычно эти программы вводятся на автоматизированные рабочие места (АРМ) конструкторов и технологов, что значительно повышает эффективность их использования. Бла­годаря этому, в частности, появляется возможность анализа многих вариантов себестоимости. Наиболее опытным специалистам удается рассчитывать с помощью новых программ ожидаемую себестоимость будущего изделия с точность до 5% за полчаса.

Экспертные системы хорошо зарекомендовали себя при решении ряда задач автоматизированного проектирования, производства интегральных схем, управления технологическими процессами и т.п.

Так, благодаря вводу экспертной системы в процесс проектирования больших интегральных схем удалось оптимизировать их разработку, проводить ее гораздо быстрее и качественнее. Одна из таких систем американской фирмы "Белл" помогает проектантам получить описание микросхемы, координировать переход от одного этапа к другому, автоматически составлять необходимую документацию и т.п.

Фирма ДЕК использует экспертные системы при разработке состава и конфигурации выпускаемых компьютеров, что позволяет ей создать машины с оптимальными характеристиками, отвечающим и всем требованиям заказчиков.

На основе заранее установленных правил применяемая фирмой система определяет, какие замены или дополнения надо внести в исход­ную конфигурацию ЭВМ, чтобы обеспечить поставку машины, соответствующей нуждам заказчика и имеющей при этом минимальную себестоимость.

При помощи этой экспертной системы фирма ДЕК определила конфигурацию более чем 90 тыс. машин и в 98 процентах случаев никаких проблем не возникало. Производительность системы в шесть раз выше по сравнению с работой "вручную". В то же время 2 процента заказов, которые оказались не под силу экспертной системе, заключает в себе наиболее интересные и сложные новые задачи, решение которых требует максимальных усилий и высокой квалификации.

Таким образом, экспертные системы не только являются средством интенсификации технологии инновационного процесса, но и способны играть роль "ищеек", выискивающих неизвестные инновационные направления.

ЗАКЛЮЧЕНИЕ

Особенностью современного этапа развития инновационной деятельности является образование в крупнейших фирмах единых научно-технический комплексов, объединяющих в единый процесс исследование и производство. Это предполагает наличие тесной связи всех этапов цикла «наука -производство". Создание целостных научно-производственно-сбытовых систем объективно закономерно, обусловлено научно-техническим прогрессом и потребностями рыночной ориентации фирмы.

В 80-е годы в инновационной политике крупных фирм отчетливо проявилась тенденция к переориентации направленности научно-технической и производственно-сбытовой деятельности. Она выражалась прежде всего в стремлении к повышению в ассортименте выпускаемой продукции удельного веса новых наукоемких изделий, сбыт которых ведет к расширению сопутствующих технических услуг: инжиниринговых, лизинговых, консультационных и др. С другой стороны, отмечается стремление к снижению издержек производства традиционной продукции.

Особенно заметно эти тенденции проявляются в инновационном менеджменте у американских машиностроительных ТНК, которые концентрируют свои усилия на разработке и производстве продукции высокой технической сложности (радиоэлектронная техника, особенно ЭВМ и микропроцессоры, авиакосмическая техника, энергетическое оборудование, средства автоматизации и др.). Они стремятся за счет монополизации выпуска таких изделий обеспечить быструю амортизацию капитала и сохранить лидерство в определенных секторах рынка машин и оборудования. Одновременно они стремятся к значительному снижению издержек производства в традиционных отраслях машиностроения в целях повышения их конкурентоспособности.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Гусейнова А.Д. Информационно-аналитическая система «Наука и инновации» / Материалы V Международной научно-практической конференции. — К.: УкрIНТЕI, 2006.

2. Донцова Л.В. Инновационная деятельность: состояние, необходимость государственной поддержки, налоговое стимулирование. //Менеджмент в России и за рубежом. №3, 2005

3. Наука и высокие технологии в России на рубеже третьего тысячелетия (социально-экономические аспекты развития) / Рук. авт. коллектива В.Л. Макаров, А.Е. Варшавский. – М.: Наука, 2001. – 636 с

4. Популярная экономическая энциклопедия / Под общ. ред. А.Д. Некипелова. — М.: Большая Российская энциклопедия, 2008.

5. http://ru.wikipedia.org/wiki/Инновационный_процесс

6. http://www.issras.ru/papers/energ03_2012_Mindeli.php

7. http://www.milogiya2007.ru/mireconom5.htm

8. http://infomanagement.ru/referat/12/25

Наши рекомендации