Плазмохимическое окисление кремния
Технология получения плазмохимических пленок
Свойства плазмохимических пленок двуокиси кремния
Кремний является наиболее хорошо исследованным материалом электронной техники. Основным процессом пассивации поверхности кремниевых пластин служит термическое окисление. Однако по мере перехода к изготовлению сверхбольших и сверхбыстродействующих интегральных схем (ССБИС) возникает необходимость в снижении температуры окислительных обработок с 1400 до 900 -1100 ºК, при которых отсутствует неконтролируемая термодиффузия примесей и другие побочные эффекты, стимулируемые высокой температурой. В связи с этим внимание исследователей начинают привлекать процессы плазменного анодирования и окисления кремния. В работах японских, американских, французских и других исследователей получены пленки плазменного диоксида кремния, по своим параметрам не уступающие лучшим термическим образцам, а по электрической прочности и превосходящие их.
Технология получения плазмохимических пленок.
Процессы плазменного окисления металлов и полупроводников заключается в формировании на их поверхности оксидных слоев при помещении подложек-образцов в кислородную плазму. Образцы могут быть изолированными (плазменное оксидирование) или находиться под положительным относительно плазмы потенциалом (плазменное анодирование).
На рисунке изображена принципиальная схема установки для осуществления процесса плазменного анодирования. Кислородная плазма возбуждается в объеме 1 генератора плазмы. Существует несколько видов плазмы, отличающиеся способом возбуждения.
Тлеющий разряд на постоянном токе.
При этом в объеме 1 создается пониженное давление кислорода (обычно 0.1--1 Торр) и между электродами 2 и 3 прикладывается постоянное напряжение разряда Ud величиной в несколько сотен вольт.
Дуговой разряд низкого давления.
Катод 3 нагревается за счет пропускания через него тока накаливания. Вследствие чего термоэмиссии электронов с поверхности катода облегчается ионизация газоразрядного промежутка, что приводит к снижению напряжения Ud до величины менее 100 В.
ВЧ разряд (радиочастотный разряд).
Плазма возбуждается за счет поглощения ВЧ мощности генератора, связанного с объемом 1 либо индуктивно, либо емкостным способом (ВЧ напряжение подается на пластины 2 и 3).
СВЧ разряд (микроволновый разряд).
Плазма возбуждается при поглощении СВЧ мощности генератора, согласованного с объемом 1 с помощью волновода.
Анодируемый образец 4 находится под положительным относительно плазмы потенциалом fа (потенциалом формовки), который подается на образец через специальный контакт. При этом величина fа может быть отрицательной относительно земли, поскольку равновесный потенциал плазмы отрицателен. Внешняя поверхность оксида в результате взаимодействия с плазмой приобретает "стеночный" потенциал fb, как правило, отрицательный относительно потенциала невозмущенной плазмы fп. Если образец изолирован от внешней электрической цепи (плазменное оксидирование), то его поверхность приобретает "плавающий" потенциал ff.
Наличие анодного потенциала fа на образце вызывает протекание через него анодного тока Ia (или тока формовки), который состоит из ионной составляющей Ii, вызывающей рост оксида, и электронной составляющей Ie. Чем больше доля ионного тока, тем эффективнее протекает рост плазменных оксидов.
Свойства плазменных окислов кремния.
Плазменные оксиды кремния независимо от способа получения представляют собой стехиометрический диоксид кремния SiO2. Их структура является аморфной, а свойства приближаются к параметрам пленок SiO2, полученных методом термического окисления кремния. Плазменные оксиды, будучи сформированными при существенно более низких температурах, не обладают дефектами упаковки, не создают механических напряжений на границах раздела оксид - подложка и в ряде случаев имеют более совершенную структуру границы.
Термические пленки SiO2, сформированные при больших скоростях окисления, содержат кластеры кремния размером 2-3 нм. В то же время плазменные оксиды, сформированные даже при более высоких скоростях, не имеют подобных дефектов на границе раздела Si - SiO2 и в них не наблюдается эффект перераспределения примеси при окислении.
Вольт-амперные характеристики оксидов туннельных толщин характеризуются механизмом проводимости, соответствующим эмиссии Фаулера-Нордгейма при напряженности электрического поля в оксиде свыше 6.5 МВ/см. Измерения электрофизических свойств оксида, полученного плазменным оксидированием кремния при одновременной подсветке поверхности лазером с длиной волны, соответствующей возбуждению связи Si-Si показали, что оксид обладает на два порядка меньшей плотностью поверхностных состояний, чем традиционные анодные оксиды, и соответствует лучшим термическим пленкам диоксида кремния.