Силикатизация оснований
Силикатизация – это химическое закрепление грунтов с Кф = 2…80 м/сут при нагнетании в основание раствора кремневой кислоты (жидкого стекла) Na2 O·nSiO2. При разложении в грунте кремневая кислота переходит в состояние геля и связывает отдельные минеральные частицы. Для ускорения данного химического процесса в грунт вводят катализатор – хлористый кальций ( Са Сl2). Такой способ закрепления грунтов получил название двухрастворного (рис. 10).
Рис. 10. Принципиальная схема двухрастворной силикатизации оснований а) - нагнетание жидкого стекла при погружении инъектора; б) – нагнетание хлористого кальция при извлечении инъектора. |
Закрепленный грунт основания приобретает прочность следующего порядка:
- песок – 1,5…3,0 Мпа;
- супесь – 0,5 Мпа;
- лёсс – 0,8 Мпа.
Силикатизация находит широкое применение для закрепления пылеватых грунтов, удовлетворяя требованиям повышения прочности оснований при реконструкции сооружений.
Для грунтов с Кф = 0,2…5 м/сут (пылеватые пески, супеси) используется однорастворный метод силикатизации. В этом случае инъекционный гелеобразующий раствор состоит из смеси жидкого стекла и фосфорной кислоты (Na2 O·nSiO2 + H3 PO4). Однорастворный метод силикатизации придает прочность грунту порядка 0,3…0,5 Мпа. Однако, из-за относительно большой стоимости H3 PO4 , данный метод закрепления получил ограниченное применение.
Необходимо отметить, что для лёссовых (химически активных) грунтов, в составе которых содержатся соли кальция (CaSO4) , также используется однорастворный метод силикатизации. В этом случае в закрепляемое основание нагнетается лишь раствор кремневой кислоты (силиката натрия), который, взаимодействуя с солями кальция, образует водонерастворимый гель.
В лёссовых грунтах однорастворный метод силикатизации придает закрепленному грунту прочность до 2 МПа.
Электрохимическое закрепление
Для грунтов с Кф < 0,1 м/сут (супеси, суглинки) применяют электрохимическое закрепление. Электрохимическое закрепление основано на явлении электроосмоса, которое еще в 1808 г. было открыто профессором Московского университета Ф. Ф. Рейсом. Суть данного явления заключается в том, что при пропускании постоянного тока через глинистый грунт, последний теряет связную воду, которая получает перемещение (миграцию) в сторону отрицательного электрода (катода).
При электрохимическом закреплении к перфорированным трубам-электродам подается постоянный ток со средним напряжением 70…80 В (рис.4.11).
Рис. 4.11. Принципиальная схема электрохимического закрепления связного грунта а) – Инъектор анод с закачкой Са Сl2; б) – Инъектор катод с откачкой свободной воды. |
Свободная вода скапливается около катода, а затем через перфорированный инъектор откачивается. Одновременно через инъектор анод подается раствор хлористого кальция (Са Сl2), который способствует закреплению основания. Периодически производится смена полярности.
В результате проведения подобных работ в связном грунте уменьшается влажность (грунт переходит в категорию тугопластичного, полутвердого состояния, с коэффициентом фильтрации Кф < 0,01 м/сут) и возрастает прочность (угол внутреннего трения и сцепления увеличиваются до 70%).
Электроосмос
Электроосмос применяется в водонасыщенных связных грунтах, а также для предварительного (превентивного) оттаивания мерзлых (в том числе и вечномерзлых) грунтов.
Также как и при электрохимическом закреплении в основание погружаются электроды: (+) анод в виде металлического стержня и (-) катод в виде перфорированной трубы. При пропускании постоянного тока через глинистый (мерзлый) грунт, последний теряет связную воду, которая получает перемещение (миграцию) в сторону отрицательного электрода (катода). Скопившаяся свободная вода у катода откачивается через перфорированный электрод-трубу.
Процесс закрепления по данной методике зависит от времени пропускания тока через грунт и сопровождается частичным разрушением металлического стержня-анода.
В результате проведения подобных работ в закрепляемом грунте происходят: 1. Уменьшение влажности. 2. Частичное уплотнение.