Реакторы с теплообменом через стенку (изотермические)
Наиболее простым аппаратом этого типа является реторная печь Грум-Гржимайло, использованная акад. С.В.Лебедевым в 30 – ых годах 20 века для получения дивинила из спирта (рис. 3.18.).
Рис. 3.18. Ретортная печь для синтеза дивинила: 1 – реторта;
2 – сборный коллектор на выходе продуктов; 3 – муфель;
4 – распределительный коллектор на входе реагентов;
5 – форсунка
Ретортная печь представляет собой муфель с двойными стенками, объединенными общим обогревателем. Узкий кольцевой промежуток между стенками является топкой печи. Обогрев происходит за счет топочных газов от сжигания мазута или газа в тангенциально расположенных форсунках. Контактные газы собираются в общий коллектор. Недостатком таких реакторов громоздкость и техническое несовершенство.
На рис.3.19. изображена реторта, представляющая собой сосуд с большим соотношением между высотой и площадью поперечного сечения, заполненный катализатором. Форма поперечного сечения реторты может быть различной: круглая, прямоугольная, овальная. Наименее выгодной является круглая форма, из-за неравномерного распределения температуры по сечению реторты.
Рис. 3.19. Реторта: 1 – штуцер для гильзы термопары; 2 – тяги
К реакторам рассматриваемого типа относятся также трубчатые аппараты. Конструктивно они могут быть с охлаждающей рубашкой около каждой трубки, с общей охлаждающей рубашкой (аппарат кожухотрубного типа с размещением катализатора в трубках или межтрубном пространстве), с двойными трубками, когда слой катализатора имеет кольцевое сечение. Примером трубчатого аппарата может служить полимеризатор пропан-пропиленовой фракции (рис. 3.20.).
Рис. 3.20. Секция многотрубного аппарата типа “труба в трубе”:
1 – корпус; 2 – рубашка
Он представляет собой реактор типа “труба в трубе” и состоит из 12 секций, работающих параллельно. При установке рубашек на каждую трубу можно использовать рубашки с меньшей толщиной стенки. Достоинством таких аппаратов является возможность применения хладоагента высокого давления; недостатки выражаются в малой производительности, большой занимаемой площади, неудобстве выгрузки катализатора.
Так же к трубчатому аппарату можно отнести аппарат для дегидрирования циклогексанола (рис.3.21.). Аппарат имеет концентрические перегородки, обеспечивающий равномерный нагрев всех трубок, и сальник, выполняющий роль компенсатора температурных удлинений.
Рис. 3.21. Трубчатый контактный аппарат для дегидрирования циклогексанола: 1 – контактные трубки; 2 – корпус;
3 – футеровка; 4 – перегородка; 5 – сальник
Основными же типами реакторов с теплообменом через стенку являются трубчатые реакторы, которые, в свою очередь, подразделяются на многотрубные и кожухотрубные.
В многотрубных реакторах (рис. 3.22.), представляющих собой обычные трубчатые теплообменники, катализатор помещен в трубках, а теплоноситель движется в межтрубном пространстве. Многотрубные реакторы применимы как для эндотермических процессов (дегидрирование бутана, бутилена, этилбензола; дегидратация и дегидрирование спиртов), так и для экзотермических (окисление, гидрогалогенирование).
Рис. 3.22. Многотрубный реактор с металлическим кожухом для дегидратации спиртов: 1 – кожух; 2 – трубные решетки;
3 – верхняя крышка; 4 – нижняя крышка; 5 – трубка
Высокоэффективным, с экономической точки зрения, является применение внутреннего теплообмена. Под этим теплообменом подразумевается использование в качестве хладоагента сырья, поступающего на реакцию. Схемы многотрубных реакторов с внутренним теплообменом приведены на рис. 3.23. а, б.
Рис. 3.23. Многотрубные реакторы с внутренним теплообменом при противотоке (а) и прямотоке или противотоке (б):
1 – нижняя крышка; 2 – верхняя крышка; 3 – верхняя трубная решетка; 4 – трубки; 5 – кожух; 6 – нижняя трубная решетка
В кожухотрубных реакторах катализатор расположен в межтрубном пространстве, а теплоноситель пропускается по трубкам. В обоих случаях гидравлический радиус сечения реакционной зоны очень невелик, что обуславливает хорошую теплопередачу. Однако не удается достичь равномерного распределения температур в реакционной зоне, так как отдельные трубки оказываются в различных условиях.
Схема кожухотрубного реактора для проведения экзотермических и эндотермических процессов приведена на рис. 3.24. а, б соответственно.
Рис. 3.24. Кожухотрубные реакторы для проведения экзотермических (а) и эндотермических (б) процессов:
1 – нижняя крышка; 2 – верхняя крышка; 3 – нижняя трубная решетка; 4 – трубки; 5 – кожух; 6 – верхняя трубная решетка;
7 – глухие трубки
Интересным вариантом кожухотрубного реактора является аппарат для проведения так называемых «адиабатических» процессов, в которых циклы реакции и регенерации быстро чередуются (рис. 3.25.).
Кожухотрубные реакторы имеют существенные преимущества перед многотрубными в отношении обеспечения более строгого теплового режима, так как в них достигаются более благоприятные условия теплообмена и большие теплопередающие поверхности. Однако они имеют и недостаток, заключающийся в деформации трубок при перегрузке катализатора. Кроме того, трубные реакторы сложны в изготовлении.
Рис. 3.25. Кожухотрубный реактор для проведения чередующихся экзотермических и эндотермических процессов:
1 – нижняя трубная решетка; 2 – штуцер для выгрузки катализатора; 3 – собирательные трубки; 4 – кожух; 5 – верхняя трубная решетка; 6 – крышка; 7 – труба для загрузки катализатора; 8 – трубки для теплоносителя;
9 – распределительные трубки; 10 – катализаторная трубная решетка; 11 – главная трубная решетка; 12 – днище