Типовые схемы вакуумных установок
СОДЕРЖАНИЕ
ВВЕДЕНИЕ………………………………………………….
1 Типовые схемы вакуумных установок…………………...
2 Выбор вакуумного насоса………………………………...
3 Выбор приборов для измерения давлений в
вакуумной системе…………………………………………..
4 Расчет натекания в вакуумную систему…………………
5 Методы течеискания………………………………………
6 Описание технологии течеискания с помощью
выбранного течеискателя…………………………………..
ЛИТЕРАТУРА……………………………………….............
ВВЕДЕНИЕ
В настоящее время вакуумную технику широко используют в различных отраслях промышленности для обеспечения технологических процессов или обеспечения работы установок различного назначения, а также в установках для имитации космических условий, ускорителях элементарных частиц.
Разработка новых технологических процессов, обеспечивающих техническое перевооружение основных отраслей производства, тесно связано с вакуумной техникой.
Новые типы полупроводниковых структур, особо чистые материалы, сплавы, специальные покрытия изготавливаются в вакууме. Вакуум является идеально чистой технологической средой, в которой можно осуществить электрохимические и электрофизические процессы при изготовлении изделий микроэлектроники.
Одним из важнейших условий получения и сохранения заданной среды в рабочих объемах различных вакуумных систем является герметичность их конструкций. В вакуумной технике герметизация осуществляется ради получения и сохранения необходимого вакуума. Контроль герметичности относится к числу испытаний необходимых для нормального функционирования вакуумных систем. Под герметичностью понимают непроницаемость конструкций для газов и жидкостей. Абсолютная герметичность недостижима, поэтому герметичными считают конструкции, газовый или жидкостный обмен через которые достаточно мал для того, чтоб мешать нормальному процессу их работы. Требования к степени герметичности устанавливаются исходя из назначения конструкций и условий работы вакуумной системы. Нарушение герметичности конструкций определяется наличием течи или проницаемостью отдельных элементов. Природа проницаемости отдельных элементов и конструкций может быть различна.
Течь - это свободный от посторонних включений канал или пористый участок конструкции, через который могут проникать газы и жидкости.
Проницаемость – это свойство самого материала пропускать различные жидкости и газы ( носит избирательный характер: кварцевое стекло проницаемо только для гелия).
Проникновение газов и жидкостей через течи происходит гораздо быстрее, чем через сплошной материал. Поэтому обнаружение обоих видов нарушения герметичности одновременно исключено. При контроле герметичности решается только одна задача: обнаружение течи.
Поскольку формы и размеры каналов течи разнообразны, их принято характеризовать количеством протекающих через них газообразных или жидких веществ в единицу времени. При заданной температуре расход (поток) газа через течь измеряется в м3 Па/с или в Вт. Это равенство характеризующее количество газа при нормальной температуре как как произведение его давления на занимаемый объем, кроме того оно может характеризоваться как запасенная в данном газе энергия.
Задача курсовой работы –выбор метода течеискания. Нам на данный момент времени известны следующие методы:
· Манометрический метод.
· Масспектрометрический метод.
· Жидкостный метод.
· Галогенный метод.
· Искровой метод.
· Электрозахватный метод.
· Катарометрический метод.
Типовые схемы вакуумных установок
Среди большого количества вакуумных систем, используемых в производстве и научных исследованиях, можно выделить несколько типовых систем, предназначенных для получения низкого, среднего, высокого и сверхвысокого вакуума. Для принципиальных схем вакуумных установок пользуются условными обозначениями, приведенными в ГОСТ 2.796-95.
В данной курсовой работе применяются установки среднего и высокого вакуума.
На рисунках 1.1 и 1.2 представлены вакуумные схемы для получения среднего и высокого вакуума соответственно.
1 – насос предварительного разряжения; 2,3,6,14,15,17,18,19 – вакуумные клапаны; 4,5,12,20 – манометры; 5 – ловушка; 7 – насос для получения среднего вакуума; 9 – электрический ввод; 10 – ввод движения; 11 – вакуумная камера; 13- газоанализатор; 16 – гигроскопатор
Рисунок 1.1 – Вакуумная система для получения низкого и среднего вакуума (105…10-2 Па)
1 – насос для получения низкого вакуума; 2,5,15,16,17,19,20,21,24,27 – клапаны, 3,8,25 – ловушки; 4 – форвакуумный баллон4 6,12,13,22,23,28 – манометры; 7 – насос для получения высокого вакуума; 9 – ввод движения; 10 – электрический ввод; 11 – вакуумная камера; 14 – газоанализатор; 18 – гигроскопатор; 26 – насос для получения среднего вакуума
Рисунок 1.2 - Вакуумная система для получения низкого и среднего вакуума (105…10-5 Па)