Тема 6. Статистичне вивчення закономірностей розподілу та варіації

Закономірність розподілу виявляється у співвідношенні варіант і частот ряду розподілу. Вона може бути охарактеризована за допомогою системи статистичних показників, до якої входять:

а) частотні характеристики – частоти та частки ряду розподілу. Додатковими характеристиками варіаційних рядів розподілу є кумулятивні (накопичені) частоти та частки, які характеризують обсяг сукупності із значеннями варіант, що не перевищують певного значення хі ;

б) характеристики центру розподілу – середнє значення ознаки, мода та медіана;

в) показники варіації;

г) характеристики форми розподілу.

Мода – це значення варіюючої ознаки, найбільш поширене в статистичній сукупності.У дискретному ряду модальне значення визначають безпосередньо за найбільшою частотою (часткою).

В інтервальному ряду за тим самим принципом визначається модальний інтервал, а в разі потреби конкретне модальне значення в межах цього інтервалу розраховується за формулою:

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де х0 – нижня межа модального інтервалу;

h – крок модального інтервалу;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – частка модального інтервалу;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – частка інтервалу, попереднього перед модальним;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – частка інтервалу, наступного за модальним;

Медіана – значення варіюючої ознаки, яка припадає на середину впоряд­кованого ряду, поділяє його навпіл – на дві рівні за обсягом частини. Під час визначення медіани використовують кумулятивні частоти або частки.

У дискретному ряду розподілу медіанним буде значення ознаки, кумулятивна частота якого перевищує половину обсягу сукупності.

В інтервальному ряду розподілу за цим принципом визначають медіанний інтервал, а значення медіани в межах цього інтервалу обчислюють за формулою:

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де х0 – нижня межа медіанного інтервалу;

h – крок медіанного інтервалу;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – обсяг сукупності;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – кумулятивна частка передмедіанного інтервалу;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – частка медіанного інтервалу.

Варіація – це зміна значень ознаки при переході від одного елемента статистичної сукупності до іншого.

Для вивчення варіації використовують систему статистичних показників, до якої входять:

1. Розмах варіації, який характеризує діапазон варіації ознаки в сукупності:

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – найбільше значення ознаки;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – найменше значення ознаки.

В інтервальних рядах розподілу розмах варіації визначається як різниця між верхньою межею останнього та нижньою межею першого інтервалу.

Перевагою цього показника є простота обчислення та ясність економічної інтерпретації. Головний недолік полягає в тому, що він визначається лише за двома граничними величинами, які часто є випадковими.

2. Середнє лінійне відхилення – середній модуль відхилень значень варіюючої ознаки від середнього її значення в сукупності:

- для незгрупованих даних: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де х – індивідуальні значення ознаки;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – середнє значення ознаки;

п –обсяг сукупності.

- для згрупованих даних: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де х – варіанти ряду розподілу;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – середнє значення ознаки;

f – частоти ряду розподілу.

Середнє лінійне відхилення показує, наскільки в середньому значення варіюючої ознаки відхиляються від її середнього значення.

3. Середнє квадратичне відхилення – показник варіації, що за своїм змістом аналогічний показнику середнього лінійного відхилення, а відрізняється методикою розрахунку:

- для незгрупованих даних: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де х – індивідуальні значення ознаки;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – середнє значення ознаки;

п –обсяг сукупності.

- для згрупованих даних: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

де х – варіанти ряду розподілу;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – середнє значення ознаки;

f – частоти ряду розподілу.

Середнє квадратичне відхилення найчастіше використовується у статистичному аналізі, тому його називають стандартним відхиленням. Чим меншою є його величина, тим слабшою є варіація і більш однорідною – статистична сукупність.

Середнє лінійне та середнє квадратичне відхилення є безпосередніми мірами варіації. Це іменовані числа, що мають одиниці виміру варіюючої ознаки. За змістом ці показники ідентичні, проте завдяки математичним властивостям Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru > Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru . Якщо обсяг сукупності досить великий і розподіл ознаки наближається до нормального, то Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru = 1,25 Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru .

4. Дисперсія – це середній квадрат відхилень значень ознаки від середнього її значення:

- для незгрупованих даних: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де х – індивідуальні значення ознаки;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – середнє значення ознаки;

п –обсяг сукупності.

- для згрупованих даних: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де х – варіанти ряду розподілу;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – середнє значення ознаки;

f – частоти ряду розподілу.

Дисперсія – величина неіменована.

Окрім наведених вище формул цей показник можна обчислювати методом різниці квадратів:

- для незгрупованих даних: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ;

- для згрупованих даних: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru .

Дисперсію альтернативної атрибутивної ознаки обчислюють як добуток часток:

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – частка елементів сукупності, яким властива ознака;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – частка решти елементів.

5. Коефіцієнт варіації – показник, що використовується для порівняння варіації однієї ознаки в різних сукупностях або різних ознак в одній сукупності та для оцінки однорідності статистичної сукупності.

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru .

Якщо значення коефіцієнта варіації перевищує 33 %, то сукупність є однорідною за досліджуваною ознакою.

1. За наведеними нижче даними про розподіл магазинів за кількістю робочих місць визначити моду та медіану.

Кількість робочих місць ( ) Кількість магазинів ( ) Кумулятивні частоти ( )
 
 
 
 
 
 
 
Разом   х

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru _________, оскільки

Висновок: найбільш розповсюджене число робочих місць в обстеженій сукупності магазинів становить ________.

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru _________, оскільки

Висновок: половина обстежених магазинів мають число робочих місць не більше ніж _____

2. За наведеними нижче даними визначте модальний та медіанний розмір стажу роботи:

Стаж роботи, років ( ) Частка працівників, % ( ) Кумулятивні частки, % ( )
До 3  
3–5  
5–7  
7–9  
9 і більше  
Разом   х

Модальний інтервал - , оскільки

Конкретне значення моди в межах цього інтервалу визначити за формулою:

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

де

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Висновок:

Медіанний інтервал - , оскільки

Конкретне значення медіани в межах цього інтервалу визначити за формулою:

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

де

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Висновок:

3. Кредитні ставки комерційних банків під короткострокові позики становили:

Кредитна ставка, % Кількість виданих кредитів
до 18
18 – 20
20 – 22
22 і більше

Обчислити та прокоментувати показники варіації розміру кредитної ставки.

Необхідні обчислення виконати в таблиці:

Кредитна ставка, % Кількість виданих кредитів ( ) Середина інтервалу   ( )   х f   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru
А 1 2 3 = гр.1*гр.2 4 5 6 = гр.5*гр.1 7 = гр.6*гр.5
до 18              
18 – 20              
20 – 22              
22 і більше              
Разом   х          

1. Розмах варіації: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

де

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Висновок: діапазон варіації кредитної ставки складає %.

Для обчислення наступних показників необхідно мати середнє значення ознаки. Оскільки дані умови – інтервальний ряд розподілу, то обчислити його слід за формулою середньої _____________________________ :

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Середня кредитна ставка становить %.

2. Середнє лінійне відхилення: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

де

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Висновок:кредитні ставки по окремих кредитах відхиляються від середньої кредитної ставки в середньому на %.

3. Середнє квадратичне відхилення: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

де

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Висновок:кредитні ставки по окремих кредитах відхиляються від середньої кредитної ставки в середньому на %.

4. Дисперсія: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

де

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

5. Коефіцієнт варіації: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

де

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Обчислене значення коефіцієнта варіації слід порівняти з 33 %.

Якщо воно не перевищує 33 %, то обстежена сукупність є однорідною за досліджуваною ознакою; якщо перевищує – неоднорідною.

Висновок:Оскільки значення коефіцієнта варіації ____________________ 33 %, то обстежена сукупність кредитів є ________________ за розміром кредитної ставки.

4. За даними попередньої задачі обчислити дисперсію методом різниці квадратів.

Необхідні обчислення виконати в таблиці:

Кредитна ставка, % Кількість виданих кредитів ( ) Середина інтервалу   ( )   х f   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru
А 1 2 3 = гр.1*гр.2 4 = гр.2*гр.2 5 = гр.4*гр.1
до 18          
18 – 20          
20 – 22          
22 і більше          
Разом   х      

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

5. За даними задачі № 3 обчислити дисперсію частки кредитів, ставка по яких не перевищує 20 %.

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

6. За даними про розподіл робітників підприємства за рівнем виконання норм виробітку обчислити та прокоментувати показники варіації виконання норм:

Виконання норм виробітку ,% Кількість робітників, чол.
до 100
100–110
110–120
120–130
130 і більше

Розв’язок аналогічний розв’язку задачі № 3.

Необхідні обчислення виконати в таблиці:

Виконання норм виробітку, % Кількість робітників, чол. ( )   ( )          
А    
до 100            
100–110            
110–120            
120–130            
130 і більше            
Разом              

1. Розмах варіації: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Висновок:

Середнє значення ознаки: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Середнє ______________________________________________ становить ______ %.

2. Середнє лінійне відхилення: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Висновок:

3. Середнє квадратичне відхилення: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Висновок:

4. Дисперсія: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

5. Коефіцієнт варіації: Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

Висновок:

7. На основі даних задачі № 2 теми 3 „Зведення і групування” обчислити дисперсію продуктивності праці за формулою для незгрупованих даних та методом різниці квадратів.

Середнє значення продуктивності праці по всій сукупності робітників ( Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ) взяти з задачі № 2 теми 3.

Розрахунки виконати в таблиці:

№ робітника Продуктивність праці, деталей за зміну ( у )   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
Разом        

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru = _________ ( деталей за зміну )

8. За даними про розподіл робітників підприємства за рівнем виконання норм виробітку обчислити дисперсію норм виробітку методом різниці квадратів:

Виконання норм виробітку ,% Кількість робітників, чол.
до 100
100–110
110–120
120–130
130 і більше

Необхідні обчислення виконати в таблиці:

Виконання норм виробітку, % Кількість робітників, чол. ( ) Середина інтервалу ( )   х f   х2 х2 f
А 1 2 3 = гр.1 * гр.2 4 = гр.2 * гр.2 5 = гр.4 * гр.1
до 100        
100–110        
110–120        
120–130        
130 і більше        
Разом   х      

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

9. Обчислити середній розмір заробітної плати, якщо коефіцієнт варіації її розміру становить 6 %, а дисперсія заробітної плати – 14 400.

10. Оцінити однорідність сукупності працівників підприємства за розміром заробітної плати, якщо середня заробітна плата становить 983 грн, а дисперсія заробітної плати – 121.

Тема 7. Ряди динаміки

Динамічний ряд – це послідовність значень показника, який характеризує зміну того чи іншого соціально-економічного явища в часі. Будь-який динамічний ряд містить перелік хронологічних дат (моментів) або інтервалів часу і конкретні значення відповідних статистичних показників, які називаються рівнями ряду.

Залежно від статистичної природи показника-рівня розрізняють динамічні ряди первинні й похідні, ряди абсолютних, середніх і відносних величин.

За ознакою часу динамічні ряди поділяються на інтервальні та моментні.

Рівень моментного ряду фіксує стан яви­ща на певний момент часу t, наприклад кількість працюючих на по­чаток року, студентів — на 1-ше вересня і т. д.

В інтервальному ряду рівень є агрегований результат процесу й залежить від тривалості часового інтервалу: виробництво електроенергії за рік, вилов риби за сезон.

Порядок обчислення середнього рівня динамічного ряду залежить від виду динамічного ряду за ознакою часу.

Якщо динамічний ряд інтервальний, то його середній рівень обчислюють за формулою середньої арифметичної простої:

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – рівні динамічного ряду;

n – кількість рівнів динамічного ряду.

Якщо динамічний ряд моментний з однаковими проміжками часу між суміжними датами, то його середній рівень обчислюють за формулою середньої хронологічної:

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – рівні динамічного ряду;

n – кількість рівнів динамічного ряду.

Якщо динамічний ряд моментний з різними проміжками часу між суміжними датами, то його середній рівень обчислюють за формулою середньої арифметичної зваженої:

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru ,

де у – рівні динамічного ряду;

t – тривалість проміжків часу між суміжними рівнями ряду.

Напрям та інтенсивність змін в динаміці описуються за допомогою системи статистичних характеристик, до якої входять:

- абсолютний приріст;

- темп зростання;

- темп приросту;

- абсолютне значення одного відсотка приросту.

Їх розрахунок ґрунтується на порівнянні рівнів ряду. За порівняння база порівняння може бути постійною чи змінною. За постійну базу вибирається початковий рівень ряду. Характеристики динаміки, обчислені відносно постійної бази, називаються базисними.

Якщо кожний рівень ряду уt порівнюється з попереднім уt-1, характеристики динаміки називаються ланцюговими.

Формули характеристик інтенсивності динаміки наведено в таблиці:

Ланцюгові характеристики Назва характеристики Базисні характеристики
  Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru   Абсолютний приріст   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru  
Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru   Темп зростання   Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru
  Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru     Темп приросту*     Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru
  Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru   Абсолютне значення одного відсотка приросту     Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru

___________________

* у ході обчислення ланцюгового темпу приросту використовують ланцюговий темп зростання; базисного – базисний темп зростання.

де Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – перший рівень динамічного ряду;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – t - тий рівень динамічного ряду;

Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru – попередній рівень динамічного ряду.

Абсолютний приріст Тема 6. Статистичне вивчення закономірностей розподілу та варіації - student2.ru характеризує абсолютний розмір збільшення (чи зменшення) рівня ряду уt за певний часовий інтервал.

Знак абсолютного приросту «+» чи «-» свідчить про напрям динаміки.

Наши рекомендации