Постановка задачи и расчет водопроводных сетей
Задачей расчета сети является определение:
а) экономически выгоднейших диаметров труб на всех участках сети;
б) потери напора в них;
в) свободных напоров во всех узлах.
Расчет проводится при работе всех потребителей и водопитателей (насосных станций) в режиме максимального водопотребления.
Основной принцип расчета сетей: для определения диаметра трубы на участке, необходимо знать расход воды на этом участке.
К началу расчета необходимо знать:
а) конфигурацию сети (трассировку на ситуационном плане);
б) длины всех участков, геометрические отметки потребителей;
в) отборы воды в узлах.
Отборы могут быть действительными (фактическими) и фиктивными. Фиктивные отборы – это сосредоточенные в узлы небольшие расходы на участках.
Отборы могут быть также фиксированными и нефиксированными. При фиксированном отборе расход воды из узла постоянен и не зависит от колебания давления в сети (благодаря регулирующему устройству).
Если отбор зависит от напора в сети, то он является нефиксированным. В таком случае для расчетов надо иметь характеристику такого отбора, аналогичную характеристике насоса .
Этапы расчета:
I. Составление расчетной схемы
Рисуется конфигурация сети. Нумеруются узлы, отборы, задаются направления потоков на участках (стрелками). Наносятся длины участков и величины отборов.
Направления потоков задаются произвольно, но как можно ближе к реальным направлениям течения. Примеры расчетных схем приведены на рис.5.2.
Рис.5.2.
Расчетные схемы сетей:
а) тупиковая;
б) кольцевая
II. Определение расхода на участках
Для нахождения P значений расходов qi-k на P участках сети используются уравнения 1-го закона Кирхгофа. Они отражают баланс расходов в узлах. Это так называемые "узловые уравнения", которые можно записать в виде суммы:
. (5.1)
Условно считают: расходы приходящие к узлу – положительные; уходящие – отрицательные. Например, для узла 2, схемы а): q1-2-Q2=0 (q1-2=Q2), для узла 2 схемы б): q1-2-q2-3-q2-5-Q2=0 и т.д.
Число таких уравнений для любой схемы будет m-1 (m – число узлов), т.к. одно уравнение превращается в тождество из-за равенства .
Для разветвленной сети – число неизвестных расходов qi-k равно числу участков P. Но P=m-1, то есть число неизвестных равно числу уравнений. Система замкнута и имеет однозначное решение. По найденным расходам выбираются экономически оптимальные диаметры труб на всех участках Di-k.
В кольцевых сетях число неизвестных – P=m+n-1, т.е уравнений 1-го закона Кирхгофа недостаточно. В качестве недостающих используются n уравнений 2-го закона Кирхгофа.
Для гидравлических сетей эти уравнения выражают равенство нулю алгебраические суммы потерь напора на каждом из колец сети. Это так называемые "контурные уравнения":
, (5.2)
где b - показатель влияния скорости потока на режим течения: b=2 – для квадратичной области течения; b<2 – для переходной области режимов; si-k – сопротивление участка: si-k=s0×li-k, где s0 – удельное сопротивление трубопровода, которое зависит от диаметра и шероховатости трубы; li-k – длина участка.
Всего уравнений (5.2) будет n, т.е. равно числу элементарных колец, j – номер кольца. Общее число уравнений (5.1) и (5.2) будет m+n-1, то есть на P неизвестных будет P уравнений. Казалось бы, система замкнута и можно искать неизвестные qi-k. Но заметим:
1) в схеме б) (рис.5.2) при неизменных отборах в узлах можно найти неограниченное число вариантов значений расходов qi-k , которые удовлетворят уравнения (5.1) во всех узлах. То есть нет однозначного решения;
2) в уравнениях (5.2) сопротивления si-k =f(Di-k). В то же время мы ищем значения qi-k для того, чтобы найти эти диаметры, т.е. и qi-k=f(Di-k). Любое изменение диаметра Di-k вызовет перераспределение расходов в кольцевой сети на всех участках. И в то же время автоматически будут удовлетворяться уравнения (5.1) и (5.2).
Таким образом всего неизвестных qi-k и Di-k – 2Р. То есть уравнений недостаточно. Какими-то величинами qi-k или Di-k необходимо предварительно задаваться. Вся сложность в том, как задаваться диаметром, если неизвестны расходы?
Возникает ответственная задача – обоснование выбора начального потокораспределения в кольцевых сетях. Его проводят с учетом требований надежности [2, 3].
Уже по выбранному потокораспределению, при полном удовлетворении уравнений (5.1), определяют расходы на участках, для которых и находят экономически наивыгоднейшие диаметры.
III. Гидравлический расчет:
а) для разветвленной (тупиковой) сети.
Так как уже известны точные расходы qi-k и выбраны диаметры Di-k на всех участках сети, то сразу проводится гидравлический расчет (см. подраздел 4.2), в результате которого определяются потери напора на участках hi-k и пьезометрические напоры во всех узлах сети Пi;
б) для кольцевой сети.
При известных диаметрах на всех участках сети рассчитывается истинное распределение расходов по участкам. При этом добиваются удовлетворения не только уравнений (5.1), но и уравнений (5.2). Это по существу поверочный расчет сети. Он носит название гидравлической увязки кольцевой сети, так как одновременно вычисляются и расходы qi-k и потери напора hi-k на всех участках сети.
Гидравлическая увязка сводится к решению системы m-1 линейных уравнений и n – нелинейных. Число неизвестных P=m+n-1, т.е. система сходится.
Существуют различные методы решений. Наиболее часто используется метод последовательных приближений Ньютона и его модификации. Но есть и множество других методов. Наиболее известны решения В.Г. Лобачева и Х. Кросса (метод Лобачева-Кросса) и М.М. Андрияшева. Они пригодны как для ручного счета, так и для использования ЭВМ.