Накопители со сменными магнитными дисками

Вопрос о технологиях хранения данных, альтернативных жесткому диску, обычно встает при возникновении задач резервного копирования и переноса информации. Жесткие диски создавались в качестве внутренних устройств компьютерной системы (за исключением специальных моделей) и потому плохо приспособлены для решения таких задач.

Основным недостатком дискет была их недолговечность: среднее время жизни составляло около полугода при средней интенсивности использования и порядка квартала – при высокой частоте циклов перезаписи. Бывали и исключения, но из личного опыта скажу, что они чаще относились к старым дискетам. Еще одной напастью являлись электромагнитные поля. Длительное воздействие поля приводило к утрате или повреждению данных. С течением времени объем также перестал быть достаточным, и в массовом сегменте начали появляться альтернативы.

Самой простой альтернативой была дальнейшая эволюция дискет. Главных конкурентов было двое. Одним из решений стал дисковод LS-120. Он был представлен группой 3M, позднее известной как компания Imation, в 1997 году и, как видно из названия, имел объем в 120 Мб. Главным достоинством в борьбе за место под солнцем была совместимость устройства с обычными дискетами 1.44 Мб. Стоит, однако, заметить, что с нестандартно форматированными дискетами (на большее число дорожек и объем) привод мог не работать. В разработке и лицензировании дизайна и стандарта принимали участие Matsushita (выпускающая продукцию под торговой маркой Panasonic и собирающаяся сейчас сменить название на этот популярный бренд, ставший, фактически, лицом компании), Mitsubishi, OR Technology и Compaq. Первоначально эта технология носила название SuperDisk, являясь продолжением раннего проекта Iomega начала 90-х.

Приводы Matsushita под торговой маркой SuperDisk продавала преимущественно Imation, остальные же бренды предпочитали использовать название LS-120. Но все же большой популярности данной технологии завоевать не удалось. Помимо Compaq лишь немногие OEM-производители использовали в своих компьютерах эти устройства. Низкая скорость записи сводила на нет преимущество в виде поддержки стандартных дискет. Появившаяся же на три года раньше технология от Iomega уже обрела большую популярность, а потому и переходить на другую все не торопились.

Устройства LS-120 фирмы Imation отличаются низкой скоростью чтения/записи (0,6 Мбайт/с), меньшей емкостью (120 Мбайт) и перспектив практически не имели с самого начала появления на рынке.

Matsushita продолжила развитие этой разработки и явила на свет LS-240, удвоив объем, помещавшийся на дискету. Ей добавили возможность форматировать обычные дискеты под объем 32 Мб, но для записи даже одного файла было необходимо перезаписывать весь диск. Сама компания Imation выпустила версию привода с аппаратным шифрованием с помощью алгоритма Блоуфиша (Blowfish) с 64-битным ключом.

Более популярным стало решение Iomega Zip. Это была дискета, похожая на обычную 3.5-дюймовую, но отличалась она чуть большей толщиной и еще более скругленными краями. Объем был весьма солидным – 100 Мб, но возможности работы с обычными дискетами этот привод был лишен. В связи с ранним появлением на свет Zip успел обосноваться в этом мире и обрести популярность в целевой аудитории до выхода LS-120. Конкуренция была не очень долгой, и название Iomega было у всех на слуху, в отличие от соперника. Привод обеспечивал большую скорость (1 Мб/с против 500 Кб/c у 1.44 Мб дискет), но для полного вытеснения дискет ему не хватало главного качества – цены. Стоимость Zip была выше, чем у LS-120, и заметно выше, чем у дискет. Конечно, за больший объем приходится платить, но это уменьшило число обладателей устройства почти до целевой аудитории (людей, которым необходимо постоянно работать со средних размеров файлами).

По сути, на этом тему гибких магнитных носителей единогласно признали исчерпанной и переключились на более перспективные направления.

Устройства HiFD фирмы Sony полностью совместимы с дисками FDD. Они имеют высокую форматированную емкость (около 200 Мбайт), стандартный интерфейс (FDD + IDE), а также хорошую скорость переноса данных (до 3,6 Мбайт/с). Однако высокие цены и проблемы с юстировкой головок «угробили» HiFD.

Рынок устройств ZIP фирмы Iomega был сравнительно узок, а сейчас совсем свернулся. И хотя ZIP после FDD были самым распространенным приводом «гибких» носителей, перспективы его печальны. Носитель представляет собой 3,5-дюймовый гибкий диск, данные с которого считываются головкой, поддерживающей постоянный зазор с поверхностью за счет эффекта Бернулли. Емкость диска 100 или 250 Мбайт при скорости передачи данных до 1,5 Мбайт/с и времени доступа около 30 мс. Последней разработкой фирмы Iomega стал «микро-ZIP»: компактный дисковод Click Drive формата PC Card Type I (емкость 40 Мбайт).

Жесткие сменные

Одним из таких направлений были накопители на сменных жестких дисках. Первой фирмой, выпускавшей такие решения, стала SyQuest Technology, Inc, основанная в 1982 году. Это был 3.9-дюймовый сменный жесткий диск, где пластины (на сленге называемые «блинами» за геометрическое сходство) располагались вместе с читающими головками в герметичном картридже, подобно обычным жестким дискам. Это позволило добиться скоростей и объемов, близких к стационарным жестким дискам, но сделало производство достаточно дорогим.

Накопители со сменными магнитными дисками - student2.ru

Рис. 3.19. Накопитель со сменными жесткими дисками

Долгие годы это был единственный способ для переноса средних объемов информации для таких целей, как издательские документы, управление содержанием интернет-сайтов, мультимедиа, цифровая фотография, быстрое резервное копирование, обмен данными, архивирование, сохранность конфиденциальных файлов. Первый картридж имел объем всего в 5 Мб, затем было достаточно много 5.25-дюймовых решений. И к концу эволюции выпустили 3.5-дюймовое устройство EZ135 объемом в 135 Мб. Именно оно и стало главным конкурентом Zip. Выпуск 230 Мб версии перевел решение в другой сегмент, ибо конкурентов в таком объеме практически не было. К тому же он был совместим со старым EZ135. Далее были выпущены две модели – SyJet/SQ1500 – полуторагигабайтная модель и гигабайтный SparQ, предложивший меньшую цену за мегабайт. К 1995 году на рынок вышла Iomega со своим продуктом Zip, сделавшим перенос данных быстрее и дешевле. Именно из-за популярности последнего и снизившихся продаж сменных дисков компания SyQuest в 1998 была объявлена банкротом. Венец эволюции – 4.7-Гб модель – находилась в продаже в 1998 году очень небольшое время и не обрела популярности.

Рынок сменных жестких дисков одно время был практически монополизирован фирмами Iomega и Castlewood, точнее — их продуктами Jaz и Orb. Сравнение характеристик сменных жестких дисков со стационарными по времени поиска, частоте вращения и максимальной скорости передачи данных показывает, что сменные устройства ненамного уступают стационарным изделиям среднего класса. Однако емкость таких дисков не превышала 5,7 Гбайт, что на порядок меньше обычной емкости стационарных дисков.

Первый вариант 3,5-дюймового съемного жесткого диска под названием Jaz (объемом 1 Гбайт) был выпущен фирмой Iomega в 1996 г. Здесь скорость передачи данных достигает 5,4 Гбайт/с, время доступа составляет 12 мс. В конце 90-х годов выпущен дисковод Jaz2 с носителями емкостью 2 Гбайт. Отличие Jaz состояло в том, что в картридже находились только «блины», читающие же головки и двигатель были расположены в самом накопителе. При помещении диска в накопитель сдвигалась так называемая шторка – пылезащитная оболочка, предохранявшая диски от физических повреждений. Дело в том, что в жестких дисках читающая головка парит над пластинами на очень малой высоте с помощью аэродинамических эффектов. Если на поверхности возникает препятствие, то поток нарушается, и головка может упасть, что приведет к ошибке чтения и, возможно, частичному выходу диска из строя. Упрощение диска привело к его меньшей стоимости в сравнении с конкурентом. Сменные жесткие диски Jaz предоставляли объемы, намного превосходящие по объему Zip – 1 и 2 Гб. Справедливости ради стоит заметить, что сменные носители Jaz большой популярности не обрели, отчасти ввиду резко набирающих популярность оптических дисков, отчасти из-за удешевления обычных жестких дисков.

Инженеры из безвременно «скончавшейся» фирмы SyQuest организовали компанию Castlewood System и разработали привод сменных жестких дисков под названием Orb. Благодаря использованию магниторезистивных головок удалось повысить плотность записи и достичь емкости 3,5-дюймовых носителей 2,16 Гбайтпри скорости чтения до 12,2 Мбайт/с.

Дальнейшее совершенствование технологии и переход на головки GMR позволил поднять емкость накопителя до 5,7 Гбайт при скорости передачи данных до 17,3 Мбайт/с.

Для бытовой цифровой техники и компактных компьютеров разработаны съемные жесткие диски форм-фактора PC Card Type II (IBM Microdrive, емкость до 2 Гбайт) и PC Card Type I (Toshiba PC Card Drivers, емкость до 6 Гбайт). Диск толщиной всего 5 мм отличается неплохими показателями: среднее время поиска 12 мс, максимальная внутренняя скорость передачи данных 60 Мбайт/с. Реальная скорость передачи зависит от особенностей реализации интерфейса PCMCIA на конкретном компьютере и в среднем составляет 800 Кбайт/с.

Оптические накопители

Стандарты компьютерных оптических технологий можно разделить на две основные группы:

- CD (CD-ROM, CD-R, CD-RW);

- DVD (DVD-ROM, DVD-RAM, DVD-RW, DVD-R, DVD+RW, DVD+R).

Дисководы CD-ROM и DVD получили широкое распространение благодаря возможности их использования в развлекательных целях. Например, устройства, созданные на основе стандарта CD, могут воспроизводить музыкальные компакт_диски, а дисководы DVD – цифровые видеодиски, которые предлагаются в магазинах или напрокат. Дисководы, в которых используются носители описываемых типов, также обладают множеством дополнительных возможностей.

Технология CD-ROM

CD-ROM (Compact Disc Read-Only Memory – память только для чтения на компакт- диске) – это оптический носитель информации, предназначенный только для чтения данных.

Другие форматы CD-R и CD-RW позволяют записывать данные на компакт-диск, а благодаря технологии DVD существенно повышается емкость обычного оптического диска.

Сегодня накопитель CD-ROM – неотъемлемая часть практически любого компьютера. Оптический носитель информации CD-ROM предназначен только для чтения; на нем может храниться до 650 Мбайт данных, что соответствует примерно 333 тыс. страниц текста, 74 минутам высококачественного звучания или их комбинации. Кроме того, более новые 80-минутные диски содержат уже до 737 Мбайт данных.

Доступ к данным, хранящимся на CD-ROM, осуществляется быстрее, чем к данным, записанным на дискетах, но все же значительно медленнее, чем на современных жестких дисках. Термин CD-ROM относится как к самим компакт_дискам, так и к устройствам (накопителям), в которых информация считывается с компакт_диска.

В 1979 году компании Sony и Philips объединили усилия в области разработки современных звуковых компакт-дисков. Philips к тому времени уже разработала лазерный проигрыватель, а у Sony за плечамибыли многолетние исследования в области цифровой звукозаписи.

Конкурентная борьба между ними могла привести к появлению двух несовместимых форматов лазерных дисков, поэтому они пришли к соглашению о единой технологии записи и производства. Компания Philips в основном занималась разработкой физического носителя, взяв за основу собственную конструкцию лазерного диска, данные которого, записанные в виде впадин разной глубины (штрихов), считывались с помощью лазера. Sony, в свою очередь, разрабатывала цифроаналоговую схему, уделяя особое внимание устройствам цифрового кодирования и коррекции ошибок.

В 1980 году обе компании представили стандарт CD-DA, называемый с тех пор форматом Red Book (это название формат получил из-за красного цвета обложки опубликованного документа). Спецификации Red Book определили способы записи и обработки звука, а также физический размер диска, равный 120 мм (4,72 дюйма), который используется по настоящее время. Как гласит легенда, такой размер был выбран потому, что диск этого диаметра полностью вмещает в себя 70-минутную Девятую симфонию Бетховена.

После завершения работы над спецификацией, компании включились в негласное соревнование за создание первого коммерческого аудиопроигрывателя компакт-дисков. Победителем в этом состязании стала Sony, которая имела больше опыта в создании цифровых электронных устройств и 1 октября 1982 года, опередив Philips всего на один месяц, представила проигрыватель CDP-101 и первый в мире звуковой компакт-диск с альбомом Билли Джоела (Billy Joel) “52nd Street”. Этот проигрыватель начал продаваться в Японии, затем в Европе и только в начале 1983 года в США. В 1984 году Sony выпустила первые автомобильные и портативные аудиоплейеры для воспроизведения компакт-дисков.

Компании Sony и Philips продолжали сотрудничать в области стандартов компакт-дисков еще в течение 10 лет и в 1984 году выпустили стандарт CD-ROM, получивший название Yellow Book. Этот стандарт позволил перейти от музыкальных компакт-дисков, используемых для хранения оцифрованного звука, к носителям, содержащим данные только для чтения, которые предназначались для компьютерных систем. В стандарте Yellow Book используется тот же физический формат, что и в звуковых компакт-дисках, но модифицированныеэлектронные схемы декодирования позволили значительно повысить надежность хранения данных. Геометрические параметры компакт-диска, принятые оригинальным стандартом Red Book, использовались фактически во всех последующих стандартах CD (по-прежнему называемых по цвету обложек опубликованных документов). Таким образом, компакт_диск прошел путь от хранителя симфонии до универсального носителя программного обеспечения и данных практически любого типа, что стало возможным благодаря появлению стандарта Yellow Book (CD_ROM).

Несмотря на внешнее сходство с компакт_дисками стандарта CD-DA, диски CD-ROM используются для хранения данных вместо (или помимо) оцифрованных звуковых записей. Дисководы CD_ROM, используемые в персональных компьютерах для считывания данных, практически идентичны проигрывателям музыкальных компакт-дисков и отличаются только измененной электронной схемой, обеспечивающей дополнительные функции выявления и коррекции ошибок. Это служит гарантией, что данные будут считываться без ошибок, так как малейший, даже самый незначительный сбой при воспроизведении звука недопустим так же, как и отсутствие данных в файле.

Компакт_диск представляет собой поликарбонатную пластину диаметром 120 мм и толщиной 1,2 мм, в центре которой расположено отверстие диаметром 15 мм. Штампованное или литое основание пластины физически является одной спиральной дорожкой, которая начинается на внутренней и заканчивается на внешней части диска. Шаг этой дорожки, или разделение спирали, равен 1,6 микрона. Компакт-диск, если смотреть на него со стороны считывания (снизу), вращается против часовой стрелки. Если рассмотреть спиральную дорожку под микроскопом, то станет видно, что она состоит из приподнятых участков, которые называются впадинами (pits), и плоских поверхностей между ними, называемых площадками (lands).

На первый взгляд может показаться странным, что приподнятый участок дорожки называется впадиной. Это связано с тем, что при штамповке диска формовка его верхней части (т.е. профиля дорожки) осуществляется таким образом, что впадины действительно становятся углублениями, сделанными в поликарбонатной пластине.

Лазер, используемый для считывания данных компакт-диска, может свободно пройти сквозь прозрачный пластик, поэтому отформованная поверхность диска покрывается отражающей металлической пленкой (обычно алюминиевой). После этого алюминиевая пленка покрывается тонким защитным слоем акрилового лака, на который, в свою очередь, наносится текст или красочное изображение.

Накопители со сменными магнитными дисками - student2.ru

Рис. 3.20. Технология изготовления диска CD-ROM.

При массовом коммерческом производстве компакт_диски изготавливаются штамповкой или прессованием, но не выжиганием с помощью лазера, как многие считают (рис. 5.7). Хотя лазер и применяется для вытравливания данных на стеклянном мастер-диске, покрытом светочувствительным материалом, непосредственное выжигание дисков при воспроизводстве сотен или тысяч копий будет по меньшей мере непрактично.

Основные этапы производства компакт_дисков:

1. Нанесение фоторезисторного слоя. Круглая пластина из полированного стекла диаметром 240 мм и толщиной 6 мм покрывается слоем фоторезистора толщиной около 150 микрон, после чего обжигается при температуре 80°С (176°F) в течение 30 минут.

2. Лазерная запись. Лазерный самописец (Laser Beam Recorder – LBR) посылает импульсы синего или фиолетового света, которые засвечивают и размягчают определенные участки фоторезисторного слоя стеклянного мастер-диска.

3. Формирование мастер-диска. Обработанный стеклянный диск погружается в раствор гидрооксида натрия (едкого натра), который растворяет экспонированные лазером участки, формируя тем самым впадины в фоторезисторном слое.

4. Электролитическое формование. С помощью процесса, называемого гальванопластикой, ранее подготовленный мастер-диск покрывается слоем никелевого сплава. В результате создается металлический мастер-диск, получивший название родительского диска (father).

5. Разделение мастер-диска. Затем металлическая матрица отделяется от стеклянного мастер-диска. Матрица представляет собой металлический мастер-диск, который уже может использоваться для изготовления небольших партий дисков, так как матрица изнашивается очень быстро. Разделение мастер-диска зачастую приводит к повреждению стеклянной основы, поэтому методом гальванопластики создают еще нескольконегативных копий диска (которые называются материнскими (mother)). Негативные копии мастер-диска впоследствии применяются для создания рабочей матрицы, используемой в процессе массового тиражирования компакт-дисков. Это позволяет штамповать большое количество дисков, без повторения процесса формирования стеклянного мастер-диска.

6. Штамповка диска. Металлическая рабочая матрица применяется в литейной машине для формирования принципа отображения данных (впадин и площадок) в расплавленной поликарбонатной массе объемом около 18 грамм, при температуре 350°C (или 662°F). Как правило, в современных термических штамповочных прессах на изготовление каждого диска уходит не более трех секунд.

7. Металлизация. Для создания отражательной поверхности на отштампованный диск посредством напыления наносится тонкий (0,05–0,1 микрона) слой алюминия.

8. Защитное покрытие. Для защиты алюминиевой пленки от окисления на металлизированный диск с помощью центрифуги наносится тонкий (6–7 микрон) слой акрилового лака, затвердевающего под действием ультрафиолетовых лучей.

9. Конечный продукт. В завершение на поверхность диска методом трафаретной печати наносится текст этикетки или какое-либо изображение, также высыхающее под действием ультрафиолетовых лучей.

Процесс изготовления дисков данных CD-ROM и музыкальных компакт-дисков практически одинаков.

Наши рекомендации