Опыт короткого замыкания трансформатора
Опытом короткого замыкания называется испытание трансформатора при короткозамкнутой цепи вторичной обмотки и номинальном токе первичной обмотки. Схема для проведения опыта короткого замыкания приведена на рис. 11.3. Опыт проводится для определения номинального значения тока вторичной обмотки, мощности потерь в проводах и падения напряжения на внутреннем сопротивлении трансформатора.
При коротком замыкании цепи вторичной обмотки, ток в ней ограничивается только малым внутренним сопротивлением этой обмотки. Поэтому, даже при относительно небольших значениях ЭДС Е2, ток I2 может достигнуть опасных величин, вызвать перегрев обмоток, разрушение изоляции и выход трансформатора из строя. Учитывая это, опыт начинают при нулевом напряжении на входе трансформатора, т.е. при . Затем постепенно увеличивают напряжение первичной обмотки до значения , при котором ток первичной обмотки достигает номинального значения. При этом ток вторичной обмотки, измеренный по амперметру А2 , принимают равным номинальному. Напряжение называют напряжением короткого замыкания.
Величина напряжения первичной обмотки в опыте короткого замыкания мала и составляет 5 ¸ 10% от номинального. Поэтому и действующее значение ЭДС вторичной обмотки Е2 составляет 2 ¸ 5%. Пропорционально значению ЭДС уменьшается магнитный поток, а значит и мощность потерь в магнитопроводе - Рс . Отсюда следует, что показания ваттметра в опыте короткого замыкания, практически определяют только потери в проводах Рпр, причем:
. (11.3)
Выразим ток I2К через приведенный ток :
.
Учтем, что , а также что .
Тогда выражение (11.3) перепишем в виде:
, (11.4)
где RК - активное сопротивление трансформатора в режиме короткого замыкания, причем:
. (11.5)
Значение активного сопротивления трансформатора позволяет рассчитать его индуктивное сопротивление:
.
При точном расчете нужно учитывать, что RК зависит от температуры. Поэтому полное сопротивление трансформатора определяют приведенным к температуре 750С, т.е.:
.
Теперь легко определить падение напряжения на внутреннем сопротивлении трансформатора - :
.
На практике пользуются приведенным значением UК, в процентах, обозначая его звездочкой, т.е.:
. (11.6)
Это значение приводят на паспортном щитке трансформатора.
Знание внутреннего сопротивления трансформатора позволяет представить его схему замещения в виде рис.11.4. Векторная диаграмма, соответствующая этой схеме приведена на рис. 11.5.
Векторная диаграмма позволяет определить уменьшение напряжения на выходе трансформатора D U за счет падения напряжения на его комплексном сопротивлении. Величина D U определяется как расстояние между прямыми, выходящими из точек начала и конца вектора и параллельными оси абсцисс. Из диаграммы видно, что эта величина складывается из катетов двух прямоугольных треугольников, гипотенузы которых и , а острые углы равны j2.
Поэтому:
.
На практике пользуются относительной величиной DU, в процентах, обозначенной звездочкой, т.е.:
. (11.7)
Для мощных трансформаторов (SH> 1000 В×А) опыт короткого замыкания может служить для контроля коэффициента трансформации. Для таких трансформаторов в режиме короткого замыкания током холостого хода можно пренебречь, считая:
.
Поэтому:
. (11.8)
Последнее выражение тем точнее, чем больше мощность трансформатора. Однако оно не приемлемо для маломощных трансформаторов.