Основные этапы нефтепереработки
С момента поступления на нефтеперерабатывающий завод нефть и получаемые из нее нефтепродукты проходят следующие основные этапы:
1. Подготовка нефти к переработке.
2. Первичная переработка нефти.
3. Вторичная переработка нефти.
4. Очистка нефтепродуктов.
Схема, отражающая взаимосвязь этих этапов, приведена на рис. 4.1.1.
Подготовка нефти к переработкезаключается в ее дополнительном обезвоживании и обессоливании. Необходимость дополнительной подготовки обусловлена тем, что для обеспечения высоких показателей работы установок по переработке нефти в них необходимо
Рис. 4.1.1. Технологические потоки современного НПЗ (упрощенная схема): I— подготовка нефти
к переработке; II — первичная перегонка нефти; III — вторичная переработка нефти; IV— очистка
нефтепродуктов
Глава 4. Переработка нефти, газа и углеводородного сырья 173
подавать сырье с содержанием солей не более 6 г/л и воды 0,2%. Поэтому нефть, поступающую на нефтеперерабатывающий завод (НПЗ), подвергают дополнительному обезвоживанию и обессоливанию.
Доведение содержания воды и солей до требуемых показателей осуществляется на электрообессоливающих установках (ЭЛОУ) следующим образом. Нефть несколькими потоками с помощью насосов прокачивается через подогреватели, где нагревается отработавшим паром. После этого в поток добавляется деэмульгатор, и нефть поступает в отстойники, где от нее отделяется вода. Для вымывания солей в нефть добавляют щелочную воду. Основное ее количество затем отделяют в электродегидраторе первой ступени. Окончательное обезвоживание нефти осуществляется в электродегидраторе второй ступени.
Переработка нефти начинается с ее перегонки(первичная переработка нефти). Нефть представляет собой сложную смесь большого количества взаимно растворимых углеводородов, имеющих различные температуры начала кипения. В ходе перегонки, повышая температуру, из нефти выделяют углеводороды, выкипающие в различных интервалах температур.
Для получения данных фракций применяют процесс, называемый ректификацией и осуществляемый в ректификационной колонне. Ректификационная колонна представляет собой вертикальный цилиндрический аппарат высотой 20...30 м и диаметром 2...4 м. Внутренность колонны разделена на отдельные отсеки большим количеством горизонтальных дисков, в которых имеются отверстия для прохождения через них паров нефти. Жидкость перемещается по сливным патрубкам.
Перед закачкой в ректификационную колонну нефть нагревают в трубчатой печи до температуры 350...360 °С. При этом легкие углеводороды, бензиновая, керосиновая и дизельная фракции переходят в парообразное состояние, а жидкая фаза с температурой кипения выше 350 °С представляет собой мазут.
После ввода данной смеси в ректификационную колонну мазут стекает вниз, а углеводороды, находящиеся в парообразном состоянии, поднимаются вверх. Кроме того, вверх поднимаются пары углеводородов, испаряющиеся из мазута, нагреваемого в нижней части колонны до 350 "С.
Поднимаясь вверх, пары углеводородов за счет контакта с жидкостью (орошением), подаваемой сверху, постепенно охлаждаются. Поэтому их температура в верхней части колонны становится равной
174 Часть I. Основы нефтегазового дела
По мере остывания паров нефти конденсируются соответствующие углеводороды. Технологический процесс рассчитан таким образом, что в самой верхней части колонны конденсируется бензиновая фракция, ниже — керосиновая, еще ниже — фракция дизельного топлива. Несконденсировавшиеся пары направляются на газофракционирование, где из них получают сухой газ (метан, этан), пропан, бутан и бензиновую фракцию.
Перегонка нефти с целью получения указанных фракций (по топливному варианту) производится на атмосферных трубчатых установках (AT). Для более глубокой переработки нефти используются атмосферно-вакуумные трубчатые установки (АВТ), имеющие кроме атмосферного вакуумный блок, где из мазута выделяют масляные фракции (дистилляты), вакуумный газойль, оставляя в остатке гудрон.
Методы вторичной переработки нефтиделятся на две группы — термические и каталитические.
К термическим методам относятся термический крекинг, коксование и пиролиз.
Термический крекинг — это процесс разложения высокомолекулярных углеводородов на более легкие при температуре 470...540 °С и давлении 4...6 МПа. Сырьем для термического крекинга является мазут и другие тяжелые нефтяные остатки. При высоких температуре и давлении длинноцепочные молекулы сырья расщепляются. Продукты реакции разделяются с получением топливных компонентов, газа и крекинг-остатка.
Коксование — это форма термического крекинга, осуществляемого при температуре 450...550 °С и давлении 0,1...0,6 МПа. При этом получаются газ, бензин, керосино-газойлевые фракции, а также кокс.
Пиролиз — это термический крекинг, проводимый при температуре 750...900 °С и давлении, близком к атмосферному, с целью получения сырья для нефтехимической промышленности. Сырьем для пиролиза являются легкие углеводороды, содержащиеся в газах, бензины первичной перегонки, керосины термического крекинга, керосино-газойлевая фракция. Продукты реакции разделяются с получением индивидуальных непредельных углеводородов (этилен, пропилен и др.). Из жидкого остатка, называемого смолой пиролиза, могут быть извлечены ароматические углеводороды.
К каталитическим методам относятся каталитический крекинг, риформинг.
Каталитический крекинг — это процесс разложения высокомолекулярных углеводородов при температурах 450...500 °С и давлении
Глава 4. Переработка нефти, газа и углеводородного сырья 175
0,2 МПа в присутствии катализаторов — веществ, ускоряющих реакцию крекинга и позволяющих осуществлять ее при более низких, чем при термическом крекинге, давлениях.
В качестве катализаторов используются, в основном, алюмосиликаты и цеолиты.
Сырьем для каталитического крекинга являются вакуумный газойль, а также продукты термического крекинга и коксования мазутов и гудронов. Получаемые продукты — газ, бензин, кокс, легкий и тяжелый газойли.
Риформинг — это каталитический процесс переработки низкооктановых бензиновых фракций, осуществляемый при температуре около 500 °С и давлении 2...4 МПа. В результате структурных преобразований октановое число углеводородов в составе катализата резко повышается. Данный катализат является основным высокооктановым компонентом товарного автомобильного бензина. Кроме того, из катализата могут быть выделены ароматические углеводороды (бензол, толуол, этилбензол, ксилолы).
Гидрогенизационныминазываются процессы переработки нефтяных фракций в присутствии водорода, вводимого в систему извне. Гидрогенизационные процессы протекают в присутствии катализаторов при температуре 260...430 °С и давлении 2...32 МПа.
Применение гидрогенизационных процессов позволяет углубить переработку нефти, обеспечив увеличение выхода светлых нефтепродуктов, а также удалить нежелательные примеси серы, кислорода, азота (гидроочистка).
Фракции (дистилляты), получаемые в ходе первичной и вторичной переработки нефти, содержат в своем составе различные примеси. Состав и концентрация примесей, содержащихся в дистиллятах, зависят от вида используемого сырья, применяемого процесса его переработки, технологического режима установки. Для удаления вредных примесей дистилляты подвергаются очистке.
Для очистки светлых нефтепродуктов применяются следующие процессы:
1) щелочная очистка (выщелачивание);
2) кислотно-щелочная очистка;
3) депарафинизация;
4) гидроочистка;
5) ингибирование.
Щелочная очистка заключается в обработке бензиновых, керосино-вых и дизельных фракций водными растворами каустической или кальцинированной соды. При этом из бензинов удаляют сероводород и час-
176 Часть I. Основы нефтегазового дела
тично меркаптаны, из керосинов и дизельного топлива — нафтеновые кислоты.
Кислотно-щелочная очистка применяется с целью удаления из дистиллятов непредельных и ароматических углеводородов, а также смол. Заключается она в обработке продукта сначала серной кислотой, а затем — в ее нейтрализации водным раствором щелочи.
Депарафинизация используется для понижения температуры застывания дизельных топлив и заключается в обработке дистиллята раствором карбамида. В ходе реакции парафиновые углеводороды образуют с карбамидом соединение, которое сначала отделяется от продукта, а затем при нагревании разлагается на парафин и карбамид.
Гидроочистка применяется для удаления сернистых соединений из бензиновых, керосиновых и дизельных фракций. Для этого в систему при температуре 350...430 °С и давлении 3...7 МПа в присутствии катализатора вводят водород. Он вытесняет серу в виде сероводорода.
Гидроочистку применяют также для очистки продуктов вторичного происхождения от непредельных соединений.
Ингибирование применяется для подавления реакций окисления и полимеризации непредельных углеводородов в бензинах термического крекинга путем введения специальных добавок.
Для очистки смазочных масел применяют следующие процессы:
1) селективную очистку растворителями;
2) депарафинизацию;
3) гидроочистку;
4) деасфальтизацию;
5) щелочную очистку.
Селективными растворителями называют вещества, которые обладают способностью извлекать при определенной температуре из нефтепродукта только какие-то определенные компоненты, не растворяя других компонентов и не растворяясь в них.
Очистка производится в экстракционных колоннах, которые бывают либо полыми внутри, либо с насадкой или тарелками различного типа.
Для очистки масел применяют следующие растворители: фурфурол, фенол, пропан, ацетон, бензол, толуол и др. С их помощью из масел удаляют смолы, асфальтены, ароматические углеводороды и твердые парафиновые углеводороды.
В результате селективной очистки образуются две фазы: полезные компоненты масла (рафинат) и нежелательные примеси (экстракт).
Депарафинизации подвергают рафинаты селективной очистки, полученные из парафинистой нефти и содержащие твердые углеводо-
Глава 4. Переработка нефти, газа и углеводородного сырья 177
роды. Если этого не сделать, то при понижении температуры масла теряют подвижность и становятся непригодными для эксплуатации.
Депарафинизация осуществляется фильтрацией после предварительного охлаждения продукта, разбавленного растворителем.
Целью гидроочистки является улучшение цвета и стабильности масел, повышение их вязкостно-температурных свойств, снижение коксуемости и содержания серы. Сущность данного процесса заключается в воздействии водорода на масляную фракцию в присутствии катализатора при температуре, вызывающей распад сернистых и других соединений.
Деасфальтизация полугудрона производится с целью их очистки от асфальто-смолистых веществ. Для разделения полугудрона на де-асфальтизат (масляная фракция) и асфальт применяется экстракция легкими углеводородами (например, сжиженным пропаном).
Щелочная очистка применяется для удаления из масел нафтеновых кислот, меркаптанов, а также для нейтрализации серной кислоты и продуктов ее взаимодействия с углеводородами, остающимися после деасфальтизации.