Пр-во азотных мин.удобрений и их классификация.
Азотные удобрения — аргонические и неорганические азотосодержащие вещества. Хорошо растворимы в воде. Азотные удобрения подразделяются на аммиачные, содержащие азот в виде катиона NH4+ , нитратные, содержащие азот в виде аниона NO3- , аммиачно-нитратные, содержащиеоба иона, и амидные, содержащие азот в форме NH2 . Все аммиачные и нитратные соли водорастворимы и хорошо усваиваются растениями, но легко уносятся в глубь почвы.
Большинство азотных удобрений получают нейтрализацией кислот щёлочами. Наиболее распространенные азот.мин. уд-ния представлены в таблице:
Наименование, получение | Содержание N ,% | Примечания |
Безводный аммиак (получается сжижением газообразного аммиака) | 82,3 | Вносится на определён.глубину (потери – 2-2,5%); поглощается по типу обменной адсорбции |
Карбамид (мочевина) 2NH3+CO2=NH2COONH4= =CO(NH2)2+H2O (2000C; 20 МПа) | 46,6 | Лучшее удобрение для внекорневой подкормки растений |
Аммиачная селитра NH3+HNO3=NH4NO3+Q | 34-35 | Закисляет почву, гигроскопична, слеживается, взрывоопасна |
Сульфат аммония 2NH3+H2SO4=(NH4)2SO4+Q | 20,5-21 | Эффективен под орошаемые культуры (рис, хлопчатник) |
Среди азотных удобрений самая большая массовая доля азота в аммиаке. Это удобрение получают прямым синтезом из азота воздуха и водорода. Внесение жидкого аммиака в почву сопряжено с трудностями чисто технического характера, поэтому в большинстве случаев используют раствор аммиака в воде, то есть аммиачную воду.
Ценным азотным удобрением является мочевина, или карбамид. Она занимает второе место среди азотных удобрений по содержанию питательного элемента. В почве под действием воды карбамид превращается в карбонат аммония. Мочевину употребляют и как кормовое средство.
В перечисленные азотные удобрения азот входит в аммонийной форме, то есть со степенью окисления -3, но в качестве удобрений используют и соединения азота со степенью окисления +5.
В настоящее время наиболее широко из азотных удобрений применяют нитрат аммония под названием «аммиачная селитра». Массовая доля азота в ней выше, чем в остальных твердых азотных удобрениях, за исключением мочевины
Фосфорная кислота
Применяют ортофосфорную кислоту в настоящее время довольно широко. Основным ее потребителем служит производство фосфорных и комбинированных удобрений и кормовых фосфатов.
Кислые фосфаты кальция используются в хлебопекарной пром-ти в качестве разрыхлителя теста. Саму кислоту и ее соли добавляют в поваренную соль, напитки, фрукт. соки, колбасные изделия. Н3РО4 и натриевые соли используют для придания огнестойкости бумаге, дереву и тканям.
Н3РО4 (безводная фосф кислота) представляет собой бесцветное вещество, плавящиеся при температуре 42.3оС. Однако на практике имеют дело с жидкой Н3РО4 что объясняется склонностью Н3РО4 к переохлаждению при темп -121С
При небольшом переохлаждении она представляет собой густую, сиропоподобную жидкость, плотностью 1,88 г/см^3
При нагревании водные растворы ортофосф кислоты теряют воду, образуя пирафосфорная, а затем метофосф кислота.
Безводная ортофосф кислота очень агрессивна. При темп 100С она разрушает стекло и почти все Ме, включая золото и платину. Н3РО4 получают из природных фосфатов: апатитов и фосфоритов 2-мя способами:
- термическим и - кислотным
Сущность термич способа сост в высокотемпературном восстановлении фосфата до элементарного фосфора в Эл печах, дальнейшего окисления до фосфорного ангидрида (Р2О5), а затем при гидратации с водой образуется фосф кислота.
Кислотный способ основан на вытеснении фосф кислоты из природных фосфатов другими более сильными кислотами, чаще всего серными. Этот способ получил название кислотный или экстракционный. Он эффективен при использовании высококонцентрированного фосфатного сырья. Полученная фосф кислота этим способом имеет низкую концентрацию. Содержит много вредных примесей и используется в осн для удобрений.
Термич способом можно получить кислоту высокой концентрации и чистоты из люблого даже низкого качества сырья. Термич кислота дороже экстракционной.
Кач-во по ГОСТ:
ГОСТ 10876-76 кислота ортофосфорная термическая
Произв 2 сорта термич чистоты:
Концентрация 73%
Пищевая кислота 70%
ГОСТ 6552- 78 реактивная фосфорная кислота
Марки : хч -87%; ч и чда – 85%(отличаются плотностью)
Хран и трансп фосф кислоту в нефутерованных емкостях, изготовленных из кислостойкой стали марки Х18Н10Т или в емкостях из углеродистых сталей, защищенных кислоупорной футировкой
55. Особенности производства калийных удобрений.
Выделение хлористого калия из сильвинитовых руд может быть основано на различии механических, физических или химических свойств составляющих компонентов. В настоящее время промышленная переработка сильвинита в хлористый калий производится преимущественно по галургическому, флотационному и комбинированному методам.
Переработка сильвинитов для получения хлористого калия по галургическому методу основана на физико-химических особенностях системы NaCl—КС1—Н2О. В то время как растворимость NaCl при повышении температуры понижается (хотя и незначительно), содержание КС1 в насыщенных обеими солями растворах резко возрастает. Эта особенность системы NaCl — КС1 — Н2О используется для производства хлористого калия из сильвинитов по галургическому методу. При помощи циклического процесса, состоящего из последовательных операций нагревания маточного раствора, выщелачивания КС1 из сильвинита, охлаждения насыщенного раствора с кристаллизацией КС1, можно выделить хлористый калий из сильвинита и получить его в виде высококачественного продукта со сравнительно низким содержанием NaCl и других примесей.
Перерабатываемые сильвиниты наряду с основными компонентами содержат примеси — ангидрит (CaSO4), нерастворимый в воде остаток (Н.О.) в виде карбонатно-глинистых соединений, карналлит (КСl MgCl2·6H2O) и др. Присутствие, например, карналлита в перерабатываемом сильвините при циклическом использовании оборотного растворяющего щелока может привести к накоплению в растворе третьей соли (MgCl2), существенно влияющей на растворимость КС1 и NaCl. Однако сейчас для производства калийных удобрений используется сильвинит с незначительным содержанием С12 в оборотных щелоках, которые не оказывает заметного влияния на растворимость солей в системе КС1 — NaCl — Н2О.
Рационально построенная схема производства хлористого калия из сильвинита должна учитывать следующие технологические особенности процесса:
1. Исходное сырье содержит лишь от одной четверти до одной трети хлористого калия, так что после выщелачивания на 1 т сильвинита остается ~ 700 кг остатка, состоящего в основном из галита. Этот остаток представляет собой отходы производства и используется обычно для закладки выработанных камер в шахтах. На некоторых фабриках отвал используется для получения рассола для содовых заводов или для производства технической и пищевой соли. В любом случае галитовые отходы перед их удалением из производства должны быть тщательно промыты для снижения потерь КС1.
2. При выщелачивании сильвинита из растворителей вместе сгорячим насыщенным щелоком выносятся тонкодисперсные частицы солевого и глинистого шлама. Для устранения загрязнения продукта эти частицы должны быть удалены из насыщенного щёлока перед его охлаждением и кристаллизацией хлористого калия.
3. Производство хлористого калия из сильвинита по галургическому способу является циклическим процессом, в котором оборотный щелок непрерывно совершает замкнутый цикл: растворение — охлаждение и кристаллизация КС1 — отделение кристаллов — нагревание щелока — растворение. При этих условиях ввод свежей воды в процесс на различные промывные операции (промывка отвала и шлама и т. п.) и другие нужды должен быть ограничен и допускается в количествах, соответствующих убыли воды на различных стадиях производственного процесса (с отвалом, шламом и т. д.). Ввод в процесс избытка воды неизбежно приводит к образованию излишка оборотного щелока и необходимости его упаривания или сброса, что связано сдополнительным расходом пара или потерями хлористого калия.
4. Оборотный щелок должен подвергаться попеременно нагреванию до 115°С перед вводом его в растворители, а затем охлаждению до 20—30°С с целью выделения хлористого калия. В целях экономии пара охлаждение горячего щелока можно осуществлять за счет самоиспарения воды в вакуум-кристаллизационной установке (ВКУ), а выделяющийся из щелока вторичный пар использовать для предварительного нагревания маточного раствора.
Важнейшими операциями производства КС1 галургическим методом являются выщелачивание (растворение) руды нагретым оборотным маточным щёлоком, осветление илисто-солевой суспензии, вакуум-кристаллизация полученного на предыдущих стадиях крепкого щёлока, отделение кристаллов КС1 от маточного раствора и их сушка.