Физические свойства нефтяного газа.

Плотность газа. Чем больше в газе доля компонентов с высокой молекулярной массой, тем больше молекулярная масса газа, которая линейно связана с плотностью газа:

Физические свойства нефтяного газа. - student2.ru (2.5)

Обычно Физические свойства нефтяного газа. - student2.ru находится в пределах 0,73-1 кг/м3. плотность индивидуальных компонентов углеводородных газов (и сероводорода), за исключением метана, больше 1.

Для характеристики плотности газа используют также ее отношение к плотности воздуха в тех же условиях (плотность воздуха при нормальных условиях составляет 1,293 кг/м3).

Физические свойства нефтяного газа. - student2.ru (2.6)

где Физические свойства нефтяного газа. - student2.ru - относительная плотность газа; Физические свойства нефтяного газа. - student2.ru - плотность газа и воздуха соответственно. Плотность индивидуальных компонентов углеводородных газов (и сероводорода), за исключением метана, больше 1.

Связь между плотностью газа и его молекулярной массой, давлением и температурой определяется законом состояния газов, который можно представить в виде:

Физические свойства нефтяного газа. - student2.ru (2.7)

где Физические свойства нефтяного газа. - student2.ru - плотность газ

Из закона состояния следует, что большую плотность при прочих равных условиях имеют газы с высокой молекулярной массой. С повышением давления плотность газа растет и уменьшается с увеличением температуры.

В лабораторной практике плотность газов обычно определяют путем взвешивания калиброванного и заполненного газом пикнометра или методом истечения. Этот метод основан на измерении времени истечения заданного объема газа через небольшое отверстие. Так как время истечения одного и того же объема газа прямо пропорционально корню квадратному из его плотности, то при сравнении времени истечения в одинаковых условиях воздуха и исследуемого газа находят относительную плотность газа.

Физические свойства нефтяного газа. - student2.ru

Рис. 2.1. Зависимость вязкости природного газа от температуры

Вязкость газов. Вязкость газа зависит от его состава, давления и температуры. Вязкость газов обусловлена обменом количества движения между слоями газа, движущимися с разными относительно друг друга скоростями. Этот обмен происходит за счет перехода молекул из одного слоя в другой при их хаотическом движении. Так как крупные молекулы обладают меньшей длиной свободного пробега (вероятность их столкновения между собой относительно велика), то количество движения, переносимое ими из слоя в слой, меньше чем небольшими по размерам молекулами. Поэтому вязкость газов с увеличением их молекулярной массы как правило уменьшается.

С повышением температуры увеличивается скорость движения молекул и соответственно количество движения, переносимое ими из слоя в слой, поэтому при невысоких давлениях вязкость газа с повышением температуры возрастает. При высоких давлениях, когда расстояния между молекулами невелики, несколько меняется передача количества движения из слоя в слой. Она происходит главным образом как и у жидкостей за счет временного объединения молекул на границе слоев, движущихся с разными скоростями. Вероятность такого объединения с ростом температуры уменьшается. Поэтому при высоких давлениях с ростом температуры вязкость газов снижается.

С увеличением давления вязкость газов возрастает: при низких давлениях незначительно и более интенсивно в области высоких давлений.

Вязкость газа определяют экспериментально, измеряя скорость течения его в капиллярах, скорость падения шарика в газе, затухание вращательных колебаний диска и другими методами. Изменение вязкости при различных давлениях и температурах можно определять расчетным путем и по графикам в зависимости от приведенных давления и температуры.

Дросселирование газов. При добыче газа часто приходится иметь дело с процессом дросселирования, т. е. с изменением давления без совершения внешней работы. Температура идеального газа при этом не должна изменяться. Температура же реального газа изменяется, что очень важно учитывать, так как это явление связано с выпадением из него влаги и углеводородного конденсата. Снижение давления газа в области относительно низких давлений (до 40 МПа) приводит к охлаждению газа, в области высоких - к нагреванию.

Изменение температуры газа при снижении давления на 0,1 МПа называется коэффициентом Джоуля-Томсона. Эта величина составляет 0,25-0,35 °С на 0,1 МПа.

Растворимость газов в жидкости. При больших давлениях растворимость газов в жидкости, в том числе и нефти подчиняется закону Генри. Согласно этому закону количество газа Vr, растворяющегося при данной температуре в объеме жидкости Уж, прямо пропорционально давлению газа р над поверхностью жидкости:

Физические свойства нефтяного газа. - student2.ru (2.8)

где а — коэффициент растворимости газа 1/Па.

Коэффициент растворимости показывает какое количество газа растворяется в единице объема нефти при увеличении давления на единицу. Коэффициент растворимости газа в нефти — величина непостоянная. В зависимости от состава нефти и газа, температуры и других факторов он изменяется от Физические свойства нефтяного газа. - student2.ru до Физические свойства нефтяного газа. - student2.ru 1/Па.

В наибольшей степени на растворимость газа в нефти влияет состав самого газа. Легкие газы (азот, метан) хуже растворимы в нефти, чем газы с относительно большей молекулярной массой (этан, пропан, углекислый газ). В нефти, содержащей больше количество легких углеводородов, растворимость газов выше по сравнению с тяжелой нефтью. С ростом температуры растворимость газов в нефти уменьшается.

Из закона Генри следует, что чем больше коэффициент растворимости, тем при меньшем давлении в данном объеме нефти растворяется один и тот же объем газа. Поэтому у нефти с большим содержанием метана, находящейся при высоких пластовых температурах, обычно высокие давления насыщения, а у тяжелой нефти с малым содержанием метана при низких пластовых температурах — низкие. С количеством растворенного газа связано различие физических свойств нефти в пластовых условиях и на поверхности.

Уравнение состояния газов.

Состояние газов характеризуется давлением Р, температурой Т, и объемом V. Связь между этими величинами определяется законами газового состояния.

Нефтяные и природные газы имеют значительные отклонения от законов идеальных газов вследствие взаимодействия между собой молекул, которое возникает при сжатии реальных газов. Степень отклонения сжимаемости реальных газов от идеальных характеризуется коэффициентом сжимаемости z, показывающим отношение объема реального газа к объему идеального при одних и тех же условиях.

В пласте углеводородные газы могут находиться в самых различных условиях. С увеличением давления от 0 до 3-4 МПа объем газов уменьшается. При этом молекулы углеводородного газа сближаются и силы притяжения между ними помогают внешним силам, сжимающим газ. Когда углеводородный газ сильно сжат, межмолекулярные расстояния оказываются настолько малыми, что отталкивающие силы начинают оказывать сопротивление дальнейшему уменьшению объема и сжимаемость газа уменьшается.

На практике состояние реальных углеводородных газов при различных температурах и давлениях можно описывать на основании уравнения Клапейрона:

Физические свойства нефтяного газа. - student2.ru (2.9)

где Р - давление газа, Па; V - объем, занимаемый газом при заданном давлении, м3; m - масса газа, кг; R - газовая постоянная, Дж/(кг -К); Т - температура, К; z - коэффициент сжимаемости.

Коэффициент сжимаемости определяют по графикам, построенным по экспериментальным данным.

Наши рекомендации