История и тенденции развития компьютерных сетей: эволюция вычислительных систем
История и тенденции развития компьютерных сетей: эволюция вычислительных систем
Эволюция вычислительных систем
Концепция вычислительных сетей является логическим результатом эволюции компьютерной технологии. Первые компьютеры 50-х годов - большие, громоздкие и дорогие - предназначались для очень небольшого числа избранных пользователей. Часто эти монстры занимали целые здания. Такие компьютеры не были предназначены для интерактивной работы пользователя, а использовались в режиме пакетной обработки.
Системы пакетной обработки, как правило, строились на базе мэйнфрейма - мощного и надежного компьютера универсального назначения. Пользователи подготавливали перфокарты, содержащие данные и команды программ, и передавали их в вычислительный центр. Операторы вводили эти карты в компьютер, а распечатанные результаты пользователи получали обычно только на следующий день.
По мере удешевления процессоров в начале 60-х годов появились новые способы организации вычислительного процесса, которые позволили учесть интересы пользователей. Начали развиваться интерактивные многотерминальные системы разделения времени В таких системах компьютер отдавался в распоряжение сразу нескольким пользователям. Каждый пользователь получал в свое распоряжение терминал, с помощью которого он мог вести диалог с компьютером. Причем время реакции вычислительной системы было достаточно мало для того, чтобы пользователю была не слишком заметна параллельная работа с компьютером и других пользователей. Разделяя таким образом компьютер, пользователи получили возможность за сравнительно небольшую плату пользоваться преимуществами компьютеризации.
Тем не менее потребность в соединении компьютеров, находящихся на большом расстоянии друг от друга, к этому времени вполне назрела. Началось все с решения более простой задачи - доступа к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных компьютеров класса суперЭВМ. Затем появились системы, в которых наряду с удаленными соединениями типа терминал-компьютер были реализованы и удаленные связи типа компьютер-компьютер. Компьютеры получили возможность обмениваться данными в автоматическом режиме, что, собственно, и является базовым механизмом любой вычислительной сети.
В начале 70-х годов произошел технологический прорыв в области производства компьютерных компонентов - появились большие интегральные схемы. Их сравнительно невысокая стоимость и высокие функциональные возможности привели к созданию мини-компьютеров, которые стали реальными конкурентами мэйнфреймов. Даже небольшие подразделения предприятий получили возможность покупать для себя компьютеры. Мини-компьютеры выполняли задачи управления технологическим оборудованием, складом и другие задачи уровня подразделения предприятия.
История и тенденции развития компьютерных сетей: сближение глобальных и локальных сетей, компьютерных и телекоммуникационных сетей.
Структуризация сетей. Общая структура телекоммуникационной сети.
Сети операторов связи. Клиенты и поставщики услуг. Корпоративные сети: преимущества использования и классификация.
Сети операторов связи
Компьютерные сети можно классифицировать по различным критериям. Уже упоминавшееся в предыдущих лекциях деление на локальные и глобальные сети происходит по территориальному признаку, то есть по размерам территории, которую покрывает сеть. Другим важным признаком классификации сетей является назначение предоставляемых услуг:
-сети операторов связи (сети провайдеров услуг) оказывают общедоступные услуги;
-корпоративные сети предоставляют услуги только сотрудникам того предприятия, которое владеет сетью.
Операторы связи и клиенты
Существуют сети, которые создаются специально для оказания общедоступных (публичных, public) телекоммуникационных услуг. Примерами таких сетей могут служить городские, региональные, национальные и международные телефонные сети. Их услугами пользуются многочисленные клиенты - владельцы домашних и мобильных телефонов, а также предприятия (корпоративные пользователи). Еще одной традиционной телекоммуникационной услугой является предоставление в аренду каналов связи. У первичных сетей PDH/SDH, создаваемых телекоммуникационным предприятием для объединения своих АТС, обычно остается не используемая для внутренних нужд канальная емкость, которую логично сдавать в аренду. Типичными потребителями этой услуги являются крупные предприятия, которые создают с помощью арендованных каналов собственные сети - телефонные или компьютерные.
Операторы связи отличаются друг от друга:набором предоставляемых услуг;территорией, в пределах которой предоставляются услуги;типом клиентов, на которых ориентированы услуги;имеющейся во владении оператора инфраструктурой - линиями связи, коммутационным оборудованием, информационными серверами и т.п.
Корпоративная сеть – сеть построенная с использованием различных топологий и объединяющая разрозненные офисы в единую сетевую систему. Часто, корпоративные сети в качестве канала передачи данных используют интернет, несмотря на это, доступ из вне к сети предприятия запрещен или строго ограничен как на физическом уровне так и на административном.
Благодаря своей логической структуре сеть позволяет организовать одновременную работу сотрудников разных подразделений с распределенными или цетрализованными территориально приложениями, базами данных и другими сервисами (обработка, систематизация и хранение данных внутрикорпоративной информации).
Корпоративная сеть логически отделена от публичных сетей, то есть ваш трафик полностью защищен от несанкционированного доступа (прослушивания) извне;
преимущества
-снижает расходы на междугородную телефонную связь и на командировки сотрудников
-повышает уровень безопасности сети
-снижает значительные затраты на поддержку
-решает проблему использования современных приложений и внедрения новых сервисов, необходимых для успешной работы организации
10.Характеристики компьютерных сетей и требования к ним
Работая в сети, пользователь формулирует определенные требования к ее характеристикам. Например, пользователь может потребовать, чтобы средняя скорость передачи его информации через сеть не опускалась ниже 2 Мбит/с. То есть в данном случае пользователь задает тот диапазон значений для средней скорости передачи информации через сеть, который для него означает хорошее качество сервиса.
Все множество характеристик качества транспортных услуг сети можно отнести к одной из следующих характеристик:
- производительность;
- надежность;
- безопасность;
- характеристики, имеющие значение только для поставщика услуг.
Первые три группы соответствуют трем наиболее важным для пользователя характеристикам транспортных услуг — возможности без потерь и перерывов в обслуживании (надежность) передавать с заданной скоростью (производительность) защищенную от несанкционированного доступа и подмены информацию (безопасность1). Понятно, что поставщик сетевых услуг, стремясь удовлетворить требования пользователей, также уделяет внимание этим характеристикам. В то же время существует ряд важных для поставщика характеристик сети, которые не интересуют пользователей.
Дело в том, что сеть обслуживает большое количество пользователей, и поставщику услуг нужно организовать работу своей сети таким образом, чтобы одновременно удовлетворить требования всех пользователей. Как правило, это сложная проблема, так как основные ресурсы сети — линии связи и коммутаторы (маршрутизаторы) — разделяются между информационными потоками пользователей. Поставщику необходимо найти такой баланс в распределении ресурсов между конкурирующими потоками, чтобы требования всех пользователей были соблюдены. Решение этой задачи включает планирование и контроль расходования ресурсов в процессе передачи пользовательского трафика. Поставщика интересуют те характеристики ресурсов, с помощью которых он обслуживает пользователей.
Типы линий связи
Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры. Синонимом термина линия связи (line) является термин канал связи(channel).
Физическая среда передачи данных (medium) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.
В зависимости от среды передачи данных линии связи разделяются на следующие:-проводные (воздушные);-кабельные (медные и волоконно-оптические);-радиоканалы наземной и спутниковой связи.
Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии используются и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.
Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции.
Скрученная пара проводов называется витой парой. Витая пара существует в экранированном варианте, когда пара медных проводов обертывается в изоляционный экран, и неэкранированном, когда изоляционная обертка отсутствует.
Аппаратура линий связи
Аппаратура передачи данных непосредственно связывает компьютеры или локальные сети пользователя с линией связи и является, таким образом, пограничным оборудованием. Традиционно аппаратуру передачи данных включают в состав линии связи. Примерами DCE являются модемы, терминальные адаптеры сетей ISDN, оптические модемы, устройства подключения к цифровым каналам. Обычно DCE работает на физическом уровне, отвечая за передачу и прием сигнала нужной формы и мощности в физическую среду.
Принципы маршрутизации
Важнейшей задачей сетевого уровня является маршрутизация - передача пакетов между двумя конечными узлами в составной сети.
К нескольким интерфейсам маршрутизаторов присоединяются сети. Каждый интерфейс маршрутизатора можно рассматривать как отдельный узел сети: он имеет сетевой адрес и локальный адрес в той подсети, которая к нему подключена. Как единое устройство маршрутизатор не имеет выделенного адреса, ни сетевого, ни локального. В сложных составных сетях почти всегда существуют несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Задачу выбора маршрута из нескольких возможных решают маршрутизаторы, а также конечные узлы. Маршрут выбирается на основании имеющейся у этих устройств информации о текущей конфигурации сети, а также на основании критерия выбора маршрута. Полученная в результате анализа информация о маршрутах дальнейшего следования пакетов помещается в таблицу маршрутизации.
Протоколы маршрутизации
Протоколы длины вектора - простейший и наиболее распространенный тип протоколов маршрутизации. Периодически каждый маршрутизатор копирует адреса получателей и метрику из своей таблицы маршрутизации и помещает эту информацию в рассылаемые соседям сообщения об обновлении. Соседние маршрутизаторы сверяют полученные данные со своими собственными таблицами маршрутизации и вносят необходимые изменения. Вторую категорию протоколов обслуживания среды составляют протоколы состояния канала. Вместо рассылки соседям содержимого своих таблиц маршрутизации каждый маршрутизатор осуществляет широковещательную рассылку списка маршрутизаторов, с которыми он имеет непосредственную связь, и напрямую подключенных к нему локальных сетей. Эта информация о состоянии канала рассылается в специальных объявлениях. Недостатком таких протоколов состояния каналов, является их сложность и высокие требования к памяти. К третьей категории протоколов по обслуживанию среды относятся протоколы правил маршрутизации. Если протоколы маршрутизации на базе алгоритмов длины вектора и состояния канала решают задачу наиболее эффективной доставки сообщения получателю, то политика маршрутизации решает задачу наиболее эффективной доставки получателю по разрешенным путям.
Функции маршрутизатора
Основная функция маршрутизатора - чтение заголовков пакетов сетевых протоколов
Функции маршрутизатора могут быть разбиты на 3 группы:
Классификация маршрутизаторов по областям применения делятся на несколько классов:
-Магистральные маршрутизаторы предназначены для построения центральной сети корпорации. Центральная сеть может состоять из большого количества локальных сетей, разбросанных по разным зданиям и использующих самые разнообразные сетевые технологии, типы компьютеров и операционных систем. Магистральные маршрутизаторы - это наиболее мощные устройства, способные обрабатывать несколько сотен тысяч или даже несколько миллионов пакетов в секунду, имеющие большое количество интерфейсов локальных и глобальных сетей.
-Маршрутизаторы региональных отделенийсоединяют региональные отделения между собой и с центральной сетью.
- Маршрутизаторы удаленных офисовсоединяют, как правило, единственную локальную сеть удаленного офиса с центральной сетью или сетью регионального отделения по глобальной связи.
- Маршрутизаторы локальных сетей (коммутаторы 3-го уровня)предназначены для разделения крупных локальных сетей на подсети.
Классы IP-адресов
-К классу А относится адрес, в котором старший бит имеет значение 0. В адресах класса А под идентификатор сети отводится 1 байт, а остальные 3 байта интерпретируются как номер узла в сети.
-К классу В относятся все адреса, старшие два бита которых имеют значение 10. В адресах класса В под номер сети и под номер узла отводится по 2 байта.
-К классу С относятся все адреса, старшие три бита которых имеют значение 110. В адресах класса С под номер сети отводится 3 байта, а под номер узла — 1 байт.
-Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый групповой адрес
-Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е. Адреса этого класса зарезервированы для будущих применений.
Порядок назначения IP –адресов:
-Централизованное распределение адресов.
В больших сетях, подобных Интернету, уникальность сетевых адресов гарантируется централизованной, иерархически организованной системой их распределения. Проблемой централизованного распределения адресов является их дефицит.
-Автоматизация процесса назначения IP -адресов.
Назначение IP-адресов узлам сети даже при не очень большом размере сети может представлять для администратора утомительную процедуру. DHCP может поддерживать способ автоматического динамического распределения адресов, а также более простые способы ручного и автоматического статического назначения адресов. Протокол DHCP работает в соответствии с моделью клиент-сервер. Во время старта системы компьютер, являющийся DHCP-клиентом, посылает в сеть широковещательный запрос на получение IP-адреса. DHCP - cepвер откликается и посылает сообщение-ответ, содержащее IP-адрес. Предполагается, что DHCP-клиент и DHCP-сервер находятся в одной IP-сети.
Стек протоколов TCP/IP
Семейство протоколов TCP/IP широко применяется во всем мире для объединения компьютеров в сеть Internet. Единая сеть Internet состоит из множества сетей различной физической природы, от локальных сетей типа Ethernet и Token Ring, до глобальных сетей типа NSFNET.
Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети могут обмениваться пакетами.
Когда необходимо передать пакет между машинами, подключенными к разным подсетям, то машина-отправитель посылает пакет в соответствующий шлюз (шлюз подключен к подсети также как обычный узел). Оттуда пакет направляется по определенному маршруту через систему шлюзов и подсетей, пока не достигнет шлюза, подключенного к той же подсети, что и машина-получатель; там пакет направляется к получателю. Объединенная сеть обеспечивает дейтаграммный сервис.
Проблема доставки пакетов в такой системе решается путем реализации во всех узлах и шлюзах межсетевого протокола IP.
Протокол IP относится к группе протоколов TCP/IP. Протокол TCP реализует транспортные функции модели OSI (Open Systems Interconnection), ее четвертого уровня. Его основная обязанность - обеспечение надежной связи между начальной и конечной точками пересылки данных. IP располагается в OSI на сетевом, или третьем, уровне; он должен поддерживать передачу маршрутизаторам адресов отправителя и получателя каждого пакета на всем пути его следования. Маршрутизаторы и коммутаторы третьего уровня считывают записанную в пакетах по правилам IP и других протоколов третьего уровня информацию и используют ее совместно с таблицами маршрутизации и некоторыми другими интеллектуальными средствами поддержки работы сети, пересылая данные по сетям TCP/IP любого масштаба - от "комнатной" до глобальной, охватывающей всю планету.
Межсетевой уровень является по существу базовым элементом во всей архитектуре протоколов, обеспечивая возможность стандартизации протоколов верхних уровней.
Типы :
-локальные (аппаратные) адреса;
-сетевые адреса (IP-адреса);
-символьные (доменные) имена.
В терминологии TCP/IP под локальным адресом понимается такой тип адреса, который используется средствами базовой технологии для доставки данных в пределах подсети, являющейся элементом составной сети. Если подсетью составной сети является локальная сеть, то локальный адрес – это MAC-адрес. MAC-адрес назначается сетевым адаптерам и сетевым интерфейсам маршрутизаторов. MAC-адреса назначаются производителями оборудования и являются уникальными. Для всех существующих технологий локальных сетей MAC-адрес состоит из 6 байт, например 11-A0-17-3D-BC-01. MAC-адрес – это адрес, используемый на канальном уровне.
IP-адрес – это адрес сетевого уровня. IP-адреса представляют собой основной тип адресов, на основании которых сетевой уровень передает пакеты между сетями. Эти адреса состоят из 4 байт, например, 109.26.17.100. IP-адрес назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер узла назначается независимо от локального адреса узла.
Символьные доменные имена - специальные имена компьютеров в сети Internet.
Классы IP-адресов
-К классу А относится адрес, в котором старший бит имеет значение 0. В адресах класса А под идентификатор сети отводится 1 байт, а остальные 3 байта интерпретируются как номер узла в сети.
-К классу В относятся все адреса, старшие два бита которых имеют значение 10. В адресах класса В под номер сети и под номер узла отводится по 2 байта.
-К классу С относятся все адреса, старшие три бита которых имеют значение 110. В адресах класса С под номер сети отводится 3 байта, а под номер узла — 1 байт.
-Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый групповой адрес
-Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е. Адреса этого класса зарезервированы для будущих применений.
История и тенденции развития компьютерных сетей: эволюция вычислительных систем