Решение игр в чистых стратегиях.

Рассмотрим конечную матричную игру двух лиц, представленную матрицей выигрышей (mxn), где число стратегий игрока А совпадает с числом строк i=1,…,m, а число стратегий игрока В совпадает с числом столбцов j=1,…,n.

Решение игр в чистых стратегиях. - student2.ru

Игрок А придерживается максиминной стратегии. Онхочет получить гарантированный выигрыш. Это значит, что для каждойi-ой стратегии он определяет наименьшее значениесвоего выигрыша, а затем выбирает максимальное из них. Математически максиминную стратегию можно записать в виде

Решение игр в чистых стратегиях. - student2.ru

Игрок В придерживается минимаксной стратегии.Он своими оптимальными стратегиями стремится уменьшить выигрыш игрока А. Поэтому при каждой j-ой стратегии он определяет величину своего мах проигрыша, а затем выбирает минимальный из них. Математически минимаксную стратегию можно записать в виде

Решение игр в чистых стратегиях. - student2.ru

Если выполняется равенство α = β, то игра имеет оптимальное решение в чистых стратегиях и чистая цена игры ν равна

ν = α = β.

В этом случае игра называется игрой с седловой точкой.

Если имеет место неравенство α <β, то игра не имеет решения в чистых стратегиях, а цена игры удовлетворяет неравенству

α < ν < β

В этом случае игра не имеет седловой точки, но имеет решение в смешанных стратегиях.

Задача.

Дана платежная матрица игры. Определить верхнюю и нижнюю цены игры, также минимаксную и максиминную стратегии игроков.

  B1 B2 B3 αi
A1
A2
βj  

Решение.

1) Нижняя цена игры.

Решение игр в чистых стратегиях. - student2.ru , следовательно, максиминная стратегия А2

2) Верхняя цена игры.

Решение игр в чистых стратегиях. - student2.ru , следовательно, максиминная стратегия В1

Имеем, ν = α = β = 4 – чистая цена игры при стратегиях А2 и В1

Следовательно, это игра с седловой точкой и есть решение в чистых стратегиях.

Решение игры: оптимальные чистые стратегии (А2, В1), цена игры ν = 4.

Редукция матричной игры.

При математической постановке игровых задач необходимо иметь в виду некоторые преобразования платежной матрицы, которые помогают уменьшить ее размерность. Эта операция называется редукцией матричной игры, и она заключается в выделении и исключении из платежной матрицы доминируемых и дублируемых стратегий.

Пусть А=(аij) платежная матрица размерности (mxn). Говорят, что стратегия Ai доминирует (дублирует) стратегию Ak , если справедливы неравенства

aij ≥ akj , где j=1,…,n.

В этом случае из платежной матрицы можно убрать k-ю строку.

Аналогично, стратегия Bj доминирует (дублирует) стратегию Bp, если справедливы неравенства

aij ≤ aip , гдеi=1,…,m.

В этом случае из платежной матрицы можно убрать p-ый столбец.

Редукция не изменяет значения игры (цены игры) в чистых стратегиях.

Задача.

С учетом пяти вариантов спроса на товары Решение игр в чистых стратегиях. - student2.ru , сложившегося на рынке, коммерческое предприятие разработало шесть технологий продажи товаров Решение игр в чистых стратегиях. - student2.ru . Найти оптимальное решение. Возможные варианты среднедневного товарооборота в млн. руб. приведены ниже в платежной матрице:

  Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru
Решение игр в чистых стратегиях. - student2.ru 0,4 0,9 0,5 0,5 0,6
Решение игр в чистых стратегиях. - student2.ru 0,6 0,5 0,7 0,8 0,9
Решение игр в чистых стратегиях. - student2.ru 0,6 0,3 0,8 0,6 0,7
Решение игр в чистых стратегиях. - student2.ru 0,3 0,8 0,5 0,4 0,3
Решение игр в чистых стратегиях. - student2.ru 0,1 0,3 0,5 0,4 0,3
Решение игр в чистых стратегиях. - student2.ru 0,4 0,8 0,5 0,4 0,5

С позиции коммерческого предприятия (выигрыши игрока А) стратегия Решение игр в чистых стратегиях. - student2.ru доминирует над стратегией Решение игр в чистых стратегиях. - student2.ru , а стратегия Решение игр в чистых стратегиях. - student2.ru доминирует над стратегией Решение игр в чистых стратегиях. - student2.ru . Следовательно, исключаем 5-ю и 6-ю строки матрицы.

  Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru
Решение игр в чистых стратегиях. - student2.ru 0,4 0,9 0,5 0,5 0,6
Решение игр в чистых стратегиях. - student2.ru 0,6 0,5 0,7 0,8 0,9
Решение игр в чистых стратегиях. - student2.ru 0,6 0,3 0,8 0,6 0,7
Решение игр в чистых стратегиях. - student2.ru 0,3 0,8 0,5 0,4 0,3

С позиций спроса на товары (проигрыши игрока В) стратегия B1 доминирует над стратегиями B3,B4,B5, поэтому эти столбцы исключаем.

  Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru
Решение игр в чистых стратегиях. - student2.ru 0,4 0,9
Решение игр в чистых стратегиях. - student2.ru 0,6 0,5
Решение игр в чистых стратегиях. - student2.ru 0,6 0,3
Решение игр в чистых стратегиях. - student2.ru 0,3 0,8

С позиций игрока А стратегия A1 доминирует над стратегией A4, а стратегия A2 доминирует над стратегией A3. Поэтому исключим 3-ю и 4-ю строки и в результате получим сокращенную платежную матрицу

  Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru
Решение игр в чистых стратегиях. - student2.ru 0,4 0,9
Решение игр в чистых стратегиях. - student2.ru 0,6 0,5

Получили платежную матрицу меньшей размерности, которую исследуем по принципу максимина и минимакса.

  Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru αi
Решение игр в чистых стратегиях. - student2.ru 0,4 0,9 0,4
Решение игр в чистых стратегиях. - student2.ru 0,6 0,5 0,5
βj 0,6 0,9  

Имеем, Решение игр в чистых стратегиях. - student2.ru , Решение игр в чистых стратегиях. - student2.ru . Следовательно, игра не имеет решения в чистых стратегиях так как α < β, седловой точки нет, а цена игры заключена в интервале 0,5 < ν < 0,6. Решать эту задачу можно только в смешанных стратегиях.

Аффинное правило.

Пусть задана исходная платежная матрица А=(aij) размерностиmxn.Аффинное преобразование -это линейное преобразование всех элементов матрицы А по формуле

Решение игр в чистых стратегиях. - student2.ru

где k ≠ 0 иb –любые константы.

Решение матричной игры для платежной матрицы А'=(a'ij) совпадает с решением для исходной платежной матрицы. Цену игры ν для исходной платежной матрицы можно найти из цены игры для преобразованной платежной матрицы ν, опираясь на аффинное правило по формуле

Решение игр в чистых стратегиях. - student2.ru

Задача. Задана платёжная матрица игры:

A = Решение игр в чистых стратегиях. - student2.ru

Необходимо упростить матрицу игры.

1. Умножим каждый из элементов матрицы Aна k = 0.001, получим:

Решение игр в чистых стратегиях. - student2.ru Решение игр в чистых стратегиях. - student2.ru

2. К каждому элементу матрицы Решение игр в чистых стратегиях. - student2.ru прибавим b = 5, получим матрицу:

Решение игр в чистых стратегиях. - student2.ru = Решение игр в чистых стратегиях. - student2.ru

Таким образом, мы получили платёжную матрицу с положительными элементами и небольшими по абсолютной величине. Искать решение для платежной матрицы А" проще, чем для исходной А.

Наши рекомендации