Методы и технологии обработки сигналов
Сигналы могут быть обработаны с использованием аналоговых методов (аналоговой обработки сигналов, или АОС), цифровых методов (цифровой обработки сигналов, или АЦСП) или комбинации аналоговых и цифровых методов (комбинированной обработки сигналов, или КОС). В некоторых случаях выбор методов ясен, в других случаях нет ясности в выборе и принятие окончательного решения основывается на определенных соображениях.
Что касается АЦСП, то главное отличие его от традиционного компьютерного анализа данных заключается в высокой скорости и эффективности выполнения сложных функций цифровой обработки, таких как фильтрация, анализ с использованием быстрого преобразования Фурье (БПФ) и сжатие данных в реальном масштабе времени.
Термин "комбинированная обработка сигналов" подразумевает, что системой выполняется и аналоговая, и цифровая обработка. Такая система может быть реализована в виде печатной платы, гибридной интегральной схемы (ИС) или отдельного кристалла с интегрированными элементами. АЦП и ЦАП рассматриваются как устройства комбинированной обработки сигналов, так как в каждом из них реализованы и аналоговые, и цифровые функции.
Недавние успехи технологии создания микросхем с очень высокой степенью интеграции позволяют осуществлять комплексную (цифровую и аналоговую) обработку на одном кристалле. Сама природа ЦОС подразумевает, что эти функции могут быть выполнены в режиме реального масштаба времени.
Сравнение аналоговой и цифровой обработки сигналов
Невозможно обработать физические аналоговые сигналы, используя только цифровые методы, так как все датчики (микрофоны, термопары, пьезоэлектрические кристаллы, головки накопителя на магнитных дисках и т.д.) являются аналоговыми устройствами.
Некоторые виды сигналов требуют наличия цепей нормализации для дальнейшей обработки сигналов как аналоговым, так и цифровым методом.
Цепи нормализации сигнала - это аналоговые процессоры, выполняющие такие функции как усиление, накопление (в измерительных и предварительных (буферных) усилителях), обнаружение сигнала на фоне шума (высокоточными усилителями синфазного сигнала, эквалайзерами и линейными приемниками), динамическое сжатие диапазона (логарифмическими усилителями, логарифмическими ЦАП и усилителями с программируемым коэффициентом усиления) и фильтрация (пассивная или активная).
Обработка аналоговых и цифровых сигналов
Вообще, поскольку АЦП перемещен ближе к датчику, большая часть обработки аналогового сигнала теперь производится АЦП. Увеличение возможностей АЦП может выражаться в увеличении частоты дискретизации, расширении динамического диапазона, повышении разрешающей способности, отсечении входного шума, использовании входной фильтрации и программируемых усилителей (PGA), наличии источников опорного напряжения на кристалле и т.д. Все упомянутые дополнения повышают функциональный уровень и упрощают систему.
При наличии современных технологий производства ЦАП и АЦП с высокими частотами дискретизации и разрешающими способностями существенный прогресс достигнут в интеграции все большего числа цепей непосредственно в АЦП /ЦАП.
На голосовых и звуковых частотах распространены комплексные устройства кодирования - декодирования – кодеки.
Существуют также видео - кодеки для таких задач, как обработка изображений.
Видеоинформация и аудиоинформация в ВМ
Представляемая в ВМ информация может быть статической или динамической. Так, числовая, символьная и логическая информация является статической — ее значение не связано со временем. Напротив, аудиоинформация имеет динамический характер — существует только в режиме реального времени и не может быть остановлена для более подробного изучения. Если изменить масштаб времени, аудиоинформация искажается, что используется, например, для создания звуковых эффектов.
Видеоинформация
Видеоинформация бывает как статической, так и динамической. Статическая видеоинформация включает в себя текст, рисунки, графики, чертежи, таблицы и др. Рисунки делятся также на плоские — двумерные и объемные — трехмерные.
Динамическая видеоинформация — это видео-, мульт- и слайд - фильмы. В их основе лежит последовательное экспонирование на экране отдельных кадров в реальном масштабе времени в соответствии со сценарием. Динамическая информация используется либо для передачи движущихся изображений (анимация), либо для последовательной демонстрации отдельных кадров (слайд - фильмы).
Для демонстрации анимационных и слайд - фильмов опираются на различные принципы. Анимационные фильмы демонстрируются так, чтобы зрительный аппарат человека не мог зафиксировать отдельных кадров (для получения качественной анимации кадры должны сменяться порядка 70 раз/с). При демонстрации слайд-фильмов каждый кадр экспонируется на экране столько времени, сколько необходимо для восприятия его человеком (обычно от 30 с до 1 мин). Слайд-фильмы можно отнести к статической видеоинформации.
В вычислительной технике существует два способа представления графических изображений: матричный (растровый) и векторный. Матричные (bitmap) форматы хорошо подходят для изображений со сложными гаммами цветов, оттенков и форм, таких как фотографии, рисунки, отсканированные данные. Векторные арматы более, приспособлены для чертежей и изображений с простыми формами, тенями и окраской.
В матричных форматах изображение представляется прямоугольной матрицей точек — пикселов (picture element), положение которых в матрице соответствует координатам точек на экране. Помимо координат каждый пиксель характеризуется своим цветом, цветом фона или градацией яркости. Количество битов, выделяемых для указания цвета пикселя, изменяется в зависимости от формата. В высококачественных изображениях цвет пикселя описывают 24 битами, что дает около 16 млн цветов. Основной недостаток матричной (растровой) графики заключается в большой емкости памяти, требуемой для хранения изображения, из-за чего для описания изображений прибегают к различным методам сжатия данных. В настоящее время существует множество форматов графических файлов, различаются алгоритмами сжатия и способами представления матричных изображений, а также сферой применения. Некоторые из распространенных форматов матричных графических файлов перечислены в таблице.
Таблица Матричные графические форматы
Обозначение | Полное название |
ВМР | Windows и OS\2 Bitmap |
GIF | Graphics Interchange Format |
PCX | PC Paintbrush File Format |
JPEG | Joint Photographic Experts Group |
TIFF | Tagged Image File Format |
PNG | Portable Network Graphics |
Векторное представление, в отличие от матричной графики, определяет описание изображения не пикселами, а кривыми — сплайнами. Сплайн — это гладкая кривая, которая проходит через две или более опорные точки, управляющие формой сплайна. В векторной графике наиболее распространены сплайны на основе кривых Безье. Суть сплайна: любую элементарную кривую можно построить, зная четыре коэффициента Р0, Р1, Р2 и Р3, соответствующие четырем точкам на плоскости. Перемещение этих точек влечет за собой изменение формы кривой.
Рисунок - Варианты сплайнов
Хотя это может показаться более сложным, но для многих видов изображений использование математических описаний является более простым способом. В векторной графике для описания объектов используются математические формулы. Это позволяет при рисовании объектов вычислять, куда необходимо помещать реальные точки изображения. Имеется ряд простейших объектов, или примитивов, например эллипс, прямоугольник, линия. Эти примитивы и их комбинации служат основой для создания более сложных изображений. В простейшем случае изображение может быть составлено из отрезков линий, для которых задаются начальные координаты, угол наклона, длина, толщина линии, цвет линии и цвет фона.
Основное достоинство векторной графики — описание объекта, является простым и занимает мало памяти. Кроме того, векторная графика в сравнении с матричной имеет следующие преимущества:
- простота масштабирования изображения без ухудшения его качества;
- независимость емкости памяти, требуемой для хранения изображения, от выбранной цветовой модели.
Недостатком векторных изображений является их некоторая искусственность, заключающаяся в том, что любое изображение необходимо разбить на конечное множество составляющих его примитивов. Как и для матричной графики, существует несколько форматов графических векторных файлов. Некоторые из них приведены в таблице.
Таблица - Векторные графические форматы
Обозначение | Полное название |
DXF | Drawing Interchange Format |
CDR | Corel Drawing |
HPGL | Hewlett-Packard Graphics Language |
PS | PostScript |
SVG | Scalable Vector Graphics |
VSD | Microsoft Visio format |
Матричная и векторная графика существуют не обособленно друг от друга. Так, векторные рисунки могут включать в себя и матричные изображения. Кроме того, векторные и матричные изображения могут быть преобразованы друг в друга. Графические форматы, позволяющие сочетать матричное и векторное описание изображения, называются метафайлами. Метафайлы обеспечивают достаточную компактность файлов с сохранением высокого качества изображения.
Таблица - Форматы метафайлов
Обозначение | Полное название |
EPS | Encapsulated PostScript |
WMF | Windows Metafile |
CGM | Computer Graphic Metafile |
Рассмотренные формы представления статической видеоинформации используются, в частности, для отдельных кадров, образующих анимационные фильмы, хранения анимационных фильмов применяются различные методы сжатия информации, большинство из которых стандартизовано.
Аудиоинформация
Понятие аудио связано со звуками, которые способно воспринимать человеческое ухо. Частоты аудиосигналов лежат в диапазоне от 15 Гц до 20 КГц, а сигналы по своей природе являются непрерывными (аналоговыми). Прежде чем быть представленной в ВМ, аудиоинформация должна быть преобразована в цифровую форму (оцифрована). Для этого значения звуковых сигналов (выборки, samples), взятые через малые промежутки времени, с помощью аналого-цифровых преобразователей (АЦП) переводятся в двоичный код. Обратное действие выполняется цифро-аналоговыми преобразователями (ЦАП). Чем чаще производятся выборки, тем выше может быть точность последующего воспроизведения исходного сигнала, тем большая емкость памяти требуется для хранения оцифрованного звука.
Цифровой эквивалент аудиосигналов обычно хранится в виде файлов, причем широко используются различные методы сжатия такой информации. Как правило, к методам сжатия аудиоинформации предъявляется требование возможности восстановления непрерывного сигнала без заметного ухудшения его качества. В настоящее время распространен целый ряд форматов хранения аудиоинформации. Которые из них перечислены в таблице.
Таблица - Форматы аудиофайлов
Оозначение | Полное название |
AVI | Audio Video Interleave |
WAV | WAVeform Extension |
MIDI | Musical Instrument Digital Interface |
AIF | Audio Interchange Format |
MPEG | Motion Picture Expert Group Audio |
RA | Real Audio |